Marques Miguel A L, Castro Alberto, Malloci Giuliano, Mulas Giacomo, Botti Silvana
Centro de Física Computacional, Departamento de Física, Universidade de Coimbra, Coimbra, Portugal.
J Chem Phys. 2007 Jul 7;127(1):014107. doi: 10.1063/1.2746031.
The van der Waals dispersion coefficients of a set of polycyclic aromatic hydrocarbons, ranging in size from the single-cycle benzene to circumovalene (C(66)H(20)), are calculated with a real-time propagation approach to time-dependent density functional theory (TDDFT). In the nonretarded regime, the Casimir-Polder integral is employed to obtain C(6), once the dynamic polarizabilities have been computed at imaginary frequencies with TDDFT. On the other hand, the numerical coefficient that characterizes the fully retarded regime is obtained from the static polarizabilities. This ab initio strategy has favorable scaling with the size of the system--as demonstrated by the size of the reported molecules--and can be easily extended to obtain higher order van der Waals coefficients.
采用含时密度泛函理论(TDDFT)的实时传播方法,计算了一组多环芳烃的范德华色散系数,这些多环芳烃的大小范围从单环苯到外接椭圆烯(C(66)H(20))。在非延迟区域,一旦用TDDFT在虚频处计算出动态极化率,就采用卡西米尔 - 波德积分来得到C(6)。另一方面,表征完全延迟区域的数值系数则从静态极化率中获得。这种从头算策略与系统大小具有良好的标度关系——如所报道分子的大小所示——并且可以很容易地扩展以获得更高阶的范德华系数。