Suppr超能文献

锁核酸寡核苷酸:新一代反义药物?

Locked nucleic acid oligonucleotides: the next generation of antisense agents?

作者信息

Grünweller Arnold, Hartmann Roland K

机构信息

Institute for Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany.

出版信息

BioDrugs. 2007;21(4):235-43. doi: 10.2165/00063030-200721040-00004.

Abstract

Locked nucleic acid (LNA) is the term for oligonucleotides that contain one or more nucleotide building blocks in which an extra methylene bridge fixes the ribose moiety either in the C3'-endo (beta-D-LNA) or C2'-endo (alpha-L-LNA) conformation. The beta-D-LNA modification results in significant increases in melting temperature of up to several degrees per LNA residue. The alpha-L-LNA stereoisomer, which also stabilizes duplexes, lends itself to use in triplex-forming oligonucleotides and transcription factor decoys, which have to maintain a B-type (C2'-endo) DNA conformation. LNA oligonucleotides are synthesized in different formats, such as all-LNA, LNA/DNA mixmers, or LNA/DNA gapmers. Essentially, all aspects of antisense technology have profited from LNA due to its unprecedented affinity, good or even improved mismatch discrimination, low toxicity, and increased metabolic stability. LNA is particularly attractive for in vivo applications that are inaccessible to RNA interference technology, such as suppression of aberrant splice sites or inhibition of oncogenic microRNAs. Furthermore, the extreme antisense-target duplex stability (formation of persistent steric blocks) conferred by beta-D-LNA also contributes to the capacity to invade stable secondary structures of RNA targets. The in vivo studies reported so far indeed point to LNA as a promising antisense player at the horizon of clinical applications.

摘要

锁核酸(LNA)是指包含一个或多个核苷酸结构单元的寡核苷酸,其中一个额外的亚甲基桥将核糖部分固定为C3'-内型(β-D-LNA)或C2'-内型(α-L-LNA)构象。β-D-LNA修饰导致熔解温度显著升高,每个LNA残基可达数度。α-L-LNA立体异构体也能稳定双链体,适用于形成三链体的寡核苷酸和转录因子诱饵,它们必须保持B型(C2'-内型)DNA构象。LNA寡核苷酸以不同形式合成,如全LNA、LNA/DNA混合体或LNA/DNA缺口体。本质上,反义技术的各个方面都因LNA而受益,这得益于其前所未有的亲和力、良好甚至更好的错配识别能力、低毒性以及更高的代谢稳定性。LNA对于RNA干扰技术无法触及的体内应用特别有吸引力,例如抑制异常剪接位点或抑制致癌性微小RNA。此外,β-D-LNA赋予的极端反义靶标双链体稳定性(形成持久的空间位阻)也有助于侵入RNA靶标的稳定二级结构。迄今为止报道的体内研究确实表明LNA在临床应用前景中是一种有前途的反义分子。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验