Lee Sang-Wook, Zhang Xudong
Department of Mechanical Science and Engineering, University of Illinois at Urbana Champaign, 1206 West Green Street, Urbana, IL 61801, USA.
J Biomech. 2007;40(14):3215-22. doi: 10.1016/j.jbiomech.2007.04.021. Epub 2007 Jul 12.
A forward dynamic model of human multi-fingered hand movement is proposed. The model represents digits 2-5 in manipulative acts as a 12-degrees-of-freedom (DOF) system, driven by torque actuators at individual joints and controlled using a parsimonious proportional-derivative (PD) scheme. The control parameters as feedback gains along with an auxiliary parameter to modulate the joint torque magnitudes and cross-coupling can be empirically identified in an iterative procedure minimizing the discrepancy between the model-prediction and measurement. The procedure is guided and computationally accelerated by pre-knowledge of relations between the parameters and kinematic responses. An empirical test based on real grasping movement data showed that the model simulated the multi-finger movements with varied inter-joint temporal coordination accurately: the grand mean of the root-mean-square-errors (RMSE) across trials performed by 28 subjects was 3.25 degrees . Analyses of the model parameters yielded new insights into intra- and inter-person variability in multi-finger movement performance, and distinguished the less variable motor control strategy from much more variable anthropometric and physiological factors.
提出了一种人类多指手部运动的正向动力学模型。该模型将操作行为中的第2至5指表示为一个12自由度(DOF)系统,由各个关节处的扭矩执行器驱动,并使用简洁的比例-微分(PD)方案进行控制。作为反馈增益的控制参数以及用于调节关节扭矩大小和交叉耦合的辅助参数,可以通过一个迭代过程凭经验确定,该过程可使模型预测与测量之间的差异最小化。该过程由参数与运动学响应之间关系的先验知识引导,并在计算上得到加速。基于实际抓握运动数据的实证测试表明,该模型能够准确模拟具有不同关节间时间协调性的多指运动:28名受试者进行的各试验中,均方根误差(RMSE)的总体平均值为3.25度。对模型参数的分析为多指运动表现中的个体内和个体间变异性提供了新的见解,并区分了变异性较小的运动控制策略与变异性大得多的人体测量和生理因素。