Suppr超能文献

多关节肌肉建模:手指中纳入肌腱-滑轮相互作用的重要性。

Modeling of multiarticular muscles: importance of inclusion of tendon-pulley interactions in the finger.

作者信息

Lee Sang Wook, Kamper Derek G

机构信息

Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, IL 60611, USA.

出版信息

IEEE Trans Biomed Eng. 2009 Sep;56(9):2253-62. doi: 10.1109/TBME.2009.2019119. Epub 2009 Apr 7.

Abstract

The purpose of this study was to examine force transmission from one of the major multiarticular muscles of the finger, flexor digitorum profundus (FDP), to the index finger. Specifically, we examined whether the popular moment arm (MA)-joint torque technique of modeling muscle force transmission can accurately represent the effects of the FDP on finger movement. A dynamic finger model employing geometric MA values (model I) was compared with another model including realistic tendon force transformation mechanisms via pulley structures and joint reaction forces (model II). Finger flexion movements generated by these models were compared with those obtained from in vivo stimulation experiments. The model with the force transformation mechanisms (model II) resulted in more realistic joint spatial coordination (i.e., proximal interphalangeal > metacarpophalangeal > or = distal interphalangeal) than the MA-based model (model I) in relation to the movement patterns evoked by stimulation. Also, the importance of the pulley structures and passive joint characteristics was confirmed in the model simulation; altering/eliminating these components significantly changed the spatial coordination of the joint angles during the resulting movements. The results of this study emphasize the functional importance of the force transformation through various biomechanical components, and suggest the importance of including these components when investigating finger motor control, such as for examining injury mechanisms or designing rehabilitation protocols.

摘要

本研究的目的是研究手指主要多关节肌肉之一的指深屈肌(FDP)向示指的力传递。具体而言,我们研究了模拟肌肉力传递的常用力臂(MA)-关节扭矩技术是否能准确反映FDP对手指运动的影响。将采用几何MA值的动态手指模型(模型I)与另一个包含通过滑轮结构和关节反作用力的实际肌腱力转换机制的模型(模型II)进行比较。将这些模型产生的手指屈曲运动与体内刺激实验获得的运动进行比较。与基于MA的模型(模型I)相比,具有力转换机制的模型(模型II)在刺激诱发的运动模式方面产生了更符合实际的关节空间协调(即近端指间关节>掌指关节>或=远端指间关节)。此外,在模型模拟中证实了滑轮结构和被动关节特性的重要性;改变/消除这些组件会显著改变运动过程中关节角度的空间协调。本研究结果强调了通过各种生物力学组件进行力转换的功能重要性,并表明在研究手指运动控制时,如检查损伤机制或设计康复方案时,纳入这些组件的重要性。

相似文献

1
Modeling of multiarticular muscles: importance of inclusion of tendon-pulley interactions in the finger.
IEEE Trans Biomed Eng. 2009 Sep;56(9):2253-62. doi: 10.1109/TBME.2009.2019119. Epub 2009 Apr 7.
2
Finger flexor motor control patterns during active flexion: an in vivo tendon force study.
Hum Mov Sci. 2007 Feb;26(1):1-10. doi: 10.1016/j.humov.2006.09.002. Epub 2006 Dec 14.
3
Estimation of finger muscle tendon tensions and pulley forces during specific sport-climbing grip techniques.
J Biomech. 2006;39(14):2583-92. doi: 10.1016/j.jbiomech.2005.08.027. Epub 2005 Oct 12.
5
Extrinsic flexor muscles generate concurrent flexion of all three finger joints.
J Biomech. 2002 Dec;35(12):1581-9. doi: 10.1016/s0021-9290(02)00229-4.
6
Intersegmental kinetics significantly impact mapping from finger musculotendon forces to fingertip forces.
J Biomech. 2017 Dec 8;65:82-88. doi: 10.1016/j.jbiomech.2017.10.004. Epub 2017 Oct 12.
9
Assessing Finger Joint Biomechanics by Applying Equal Force to Flexor Tendons In Vitro Using a Novel Simultaneous Approach.
PLoS One. 2016 Aug 11;11(8):e0160301. doi: 10.1371/journal.pone.0160301. eCollection 2016.
10
Flexor digitorum profundus tendon tension during finger manipulation.
J Hand Ther. 2005 Jul-Sep;18(3):330-8; quiz 338. doi: 10.1197/j.jht.2005.04.001.

引用本文的文献

1
Anthropometric scaling of musculoskeletal models of the hand captures age-dependent differences in lateral pinch force.
J Biomech. 2021 Jun 23;123:110498. doi: 10.1016/j.jbiomech.2021.110498. Epub 2021 May 14.
3
Toward Restoration of Normal Mechanics of Functional Hand Tasks Post-Stroke: Subject-Specific Approach to Reinforce Impaired Muscle Function.
IEEE Trans Neural Syst Rehabil Eng. 2019 Aug;27(8):1606-1616. doi: 10.1109/TNSRE.2019.2924208. Epub 2019 Jun 20.
5
Connecting the wrist to the hand: A simulation study exploring changes in thumb-tip endpoint force following wrist surgery.
J Biomech. 2017 Jun 14;58:97-104. doi: 10.1016/j.jbiomech.2017.04.024. Epub 2017 May 5.
6
Assessing Finger Joint Biomechanics by Applying Equal Force to Flexor Tendons In Vitro Using a Novel Simultaneous Approach.
PLoS One. 2016 Aug 11;11(8):e0160301. doi: 10.1371/journal.pone.0160301. eCollection 2016.
7
Development of a biomimetic hand exotendon device (BiomHED) for restoration of functional hand movement post-stroke.
IEEE Trans Neural Syst Rehabil Eng. 2014 Jul;22(4):886-98. doi: 10.1109/TNSRE.2014.2298362. Epub 2014 Jan 13.
8
Passive elastic properties of the rat ankle.
J Biomech. 2012 Jun 1;45(9):1728-32. doi: 10.1016/j.jbiomech.2012.03.017. Epub 2012 Apr 19.

本文引用的文献

1
Finger joint motion generated by individual extrinsic muscles: a cadaveric study.
J Orthop Surg Res. 2008 Jul 11;3:27. doi: 10.1186/1749-799X-3-27.
2
Analysis of musculoskeletal loading in an index finger during tapping.
J Biomech. 2008;41(3):668-76. doi: 10.1016/j.jbiomech.2007.09.025. Epub 2007 Nov 7.
3
Biodynamic modeling, system identification, and variability of multi-finger movements.
J Biomech. 2007;40(14):3215-22. doi: 10.1016/j.jbiomech.2007.04.021. Epub 2007 Jul 12.
4
The tendon network of the fingers performs anatomical computation at a macroscopic scale.
IEEE Trans Biomed Eng. 2007 Jun;54(6 Pt 2):1161-6. doi: 10.1109/TBME.2006.889200.
5
Finger flexor motor control patterns during active flexion: an in vivo tendon force study.
Hum Mov Sci. 2007 Feb;26(1):1-10. doi: 10.1016/j.humov.2006.09.002. Epub 2006 Dec 14.
6
Biomechanical model for the determination of the forces acting on the finger pulley system.
J Biomech. 2006;39(5):915-23. doi: 10.1016/j.jbiomech.2005.01.028.
7
Estimation of finger muscle tendon tensions and pulley forces during specific sport-climbing grip techniques.
J Biomech. 2006;39(14):2583-92. doi: 10.1016/j.jbiomech.2005.08.027. Epub 2005 Oct 12.
8
9
A 3D biomechanical model of the hand for power grip.
J Biomech Eng. 2003 Feb;125(1):78-83. doi: 10.1115/1.1532791.
10
Friction between human finger flexor tendons and pulleys at high loads.
J Biomech. 2003 Jan;36(1):63-71. doi: 10.1016/s0021-9290(02)00242-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验