Suppr超能文献

细胞骨架重塑中的定向记忆与笼状动力学

Directional memory and caged dynamics in cytoskeletal remodelling.

作者信息

Lenormand Guillaume, Chopin Julien, Bursac Predrag, Fredberg Jeffrey J, Butler James P

机构信息

Molecular and Integrative Physiological Sciences, Department of Environmental Health, School of Public Health, Harvard University, Boston, MA 02115, USA.

出版信息

Biochem Biophys Res Commun. 2007 Sep 7;360(4):797-801. doi: 10.1016/j.bbrc.2007.05.228. Epub 2007 Jul 5.

Abstract

We report directional memory of spontaneous nanoscale displacements of an individual bead firmly anchored to the cytoskeleton of a living cell. A novel method of analysis shows that for shorter time intervals cytoskeletal displacements are antipersistent and thus provides direct evidence in a living cell of molecular trapping and caged dynamics. At longer time intervals displacements are persistent. The transition from antipersistence to persistence is indicative of a time-scale for cage rearrangements and is found to depend upon energy release due to ATP hydrolysis and proximity to a glass transition. Anomalous diffusion is known to imply memory, but we show here that memory is attributed to direction rather than step size. As such, these data are the first to provide a molecular-scale physical picture describing the cytoskeletal remodelling process and its rate of progression.

摘要

我们报告了牢固锚定在活细胞细胞骨架上的单个珠子自发纳米级位移的方向记忆。一种新的分析方法表明,在较短的时间间隔内,细胞骨架位移具有反持续性,从而在活细胞中为分子捕获和笼状动力学提供了直接证据。在较长的时间间隔内,位移是持续性的。从反持续性到持续性的转变表明了笼状重排的时间尺度,并且发现其取决于ATP水解导致的能量释放以及与玻璃化转变的接近程度。已知反常扩散意味着记忆,但我们在此表明,记忆归因于方向而非步长。因此,这些数据首次提供了描述细胞骨架重塑过程及其进展速率的分子尺度物理图景。

相似文献

1
Directional memory and caged dynamics in cytoskeletal remodelling.
Biochem Biophys Res Commun. 2007 Sep 7;360(4):797-801. doi: 10.1016/j.bbrc.2007.05.228. Epub 2007 Jul 5.
3
Cytoskeletal remodelling and slow dynamics in the living cell.
Nat Mater. 2005 Jul;4(7):557-61. doi: 10.1038/nmat1404. Epub 2005 Jun 5.
5
Actin polymerization and ATP hydrolysis.
Science. 1987 Oct 30;238(4827):638-44. doi: 10.1126/science.3672117.
6
Nucleotide hydrolysis in cytoskeletal assembly.
Curr Opin Cell Biol. 1991 Feb;3(1):12-7. doi: 10.1016/0955-0674(91)90160-z.
7
Role of heat shock protein 27 in cytoskeletal remodeling of the airway smooth muscle cell.
J Appl Physiol (1985). 2004 May;96(5):1701-13. doi: 10.1152/japplphysiol.01129.2003. Epub 2004 Jan 16.
8
Out-of-equilibrium dynamics in the cytoskeleton of the living cell.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Oct;76(4 Pt 1):041901. doi: 10.1103/PhysRevE.76.041901. Epub 2007 Oct 1.
9
Mapping the cytoskeletal prestress.
Am J Physiol Cell Physiol. 2010 May;298(5):C1245-52. doi: 10.1152/ajpcell.00417.2009. Epub 2010 Feb 17.

引用本文的文献

1
Biomechanics of Collective Cell Migration in Cancer Progression: Experimental and Computational Methods.
ACS Biomater Sci Eng. 2019;5(8):3766-3787. doi: 10.1021/acsbiomaterials.8b01428. Epub 2019 May 22.
3
Label-free Multiscale Transport Imaging of the Living Cell.
Biophys J. 2018 Sep 4;115(5):874-880. doi: 10.1016/j.bpj.2018.07.034. Epub 2018 Aug 8.
4
Local motion analysis reveals impact of the dynamic cytoskeleton on intracellular subdiffusion.
Biophys J. 2012 Feb 22;102(4):758-67. doi: 10.1016/j.bpj.2011.12.057. Epub 2012 Feb 21.
5
Dynamics of the cytoskeleton: how much does water matter?
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Jun;83(6 Pt 1):061918. doi: 10.1103/PhysRevE.83.061918. Epub 2011 Jun 27.
6
Remodeling of integrated contractile tissues and its dependence on strain-rate amplitude.
Phys Rev Lett. 2010 Oct 8;105(15):158102. doi: 10.1103/PhysRevLett.105.158102. Epub 2010 Oct 4.
7
Emergence of airway smooth muscle functions related to structural malleability.
J Appl Physiol (1985). 2011 Apr;110(4):1130-5. doi: 10.1152/japplphysiol.01192.2010. Epub 2010 Dec 2.
8
9
10
Modulation of host cell mechanics by Trypanosoma cruzi.
J Cell Physiol. 2009 Feb;218(2):315-22. doi: 10.1002/jcp.21606.

本文引用的文献

1
Universal physical responses to stretch in the living cell.
Nature. 2007 May 31;447(7144):592-5. doi: 10.1038/nature05824.
2
Cytoskeleton dynamics: fluctuations within the network.
Biochem Biophys Res Commun. 2007 Apr 6;355(2):324-30. doi: 10.1016/j.bbrc.2007.01.191. Epub 2007 Feb 9.
3
Power laws in microrheology experiments on living cells: Comparative analysis and modeling.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Aug;74(2 Pt 1):021911. doi: 10.1103/PhysRevE.74.021911. Epub 2006 Aug 9.
4
The role of F-actin and myosin in epithelial cell rheology.
Biophys J. 2006 Nov 15;91(10):3946-56. doi: 10.1529/biophysj.106.091264. Epub 2006 Sep 1.
5
Linearity and time-scale invariance of the creep function in living cells.
J R Soc Interface. 2004 Nov 22;1(1):91-7. doi: 10.1098/rsif.2004.0010.
6
Fast and slow dynamics of the cytoskeleton.
Nat Mater. 2006 Aug;5(8):636-40. doi: 10.1038/nmat1685. Epub 2006 Jul 9.
7
The consensus mechanics of cultured mammalian cells.
Proc Natl Acad Sci U S A. 2006 Jul 5;103(27):10259-10264. doi: 10.1073/pnas.0510348103. Epub 2006 Jun 22.
8
Novel dynamic rheological behavior of individual focal adhesions measured within single cells using electromagnetic pulling cytometry.
Acta Biomater. 2005 May;1(3):295-303. doi: 10.1016/j.actbio.2005.02.003. Epub 2005 Mar 31.
9
Nanotechnology for cell-substrate interactions.
Ann Biomed Eng. 2006 Jan;34(1):59-74. doi: 10.1007/s10439-005-9006-3. Epub 2006 Mar 9.
10
Rat airway smooth muscle cell during actin modulation: rheology and glassy dynamics.
Am J Physiol Cell Physiol. 2005 Dec;289(6):C1388-95. doi: 10.1152/ajpcell.00060.2005. Epub 2005 Aug 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验