Nakada Norihide, Shinohara Hiroyuki, Murata Ayako, Kiri Kentaro, Managaki Satoshi, Sato Nobuyuki, Takada Hideshige
Laboratory of Organic Geochemistry, Institute of Symbiotic Science and Technology, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan.
Water Res. 2007 Nov;41(19):4373-82. doi: 10.1016/j.watres.2007.06.038. Epub 2007 Jun 21.
We investigated the efficiencies of removal of 24 pharmaceutically active compounds (PhACs) during sand filtration and ozonation in an operating municipal sewage treatment plant (STP). The target compounds were 2 phenolic antiseptics (thymol, triclosan), 5 acidic analgesics or anti-inflammatories (ibuprofen, naproxen, ketoprofen, fenoprofen, mefenamic acid), 4 amide pharmaceuticals (propyphenazone, crotamiton, carbamazepine, diethyltoluamide), 7 antibiotics (sulfapyridine, sulfamethoxazole, trimethoprim, azithromycin, erythromycin anhydride, clarithromycin, roxithromycin), 3 phenolic endocrine-disrupting chemicals (EDCs) (nonylphenol:NP, octylphenol:OP, bisphenol A:BPA) and 3 natural estrogens (17 beta-estradiol:E2, estrone:E1, estriol:E3). Ozonation removed approximately 80% or more of the phenolic antiseptics, crotamiton, sulfonamide and macrolide antibiotics, and 17 beta-estradiol. Their removal is discussed in terms of chemical structure. The study ascertained the validity of ozonation mechanisms proposed by previous studies in an actually running STP. Compounds with a CC double bond or an aromatic structure with electron donors (e.g., phenol, alkyl, methoxy, or non-protonated amine) were susceptible to ozonation. Compounds with amide structures were resistant. Removal of the PhACs during sand filtration was generally inefficient, probably because of their low hydrophobicities. The combination of ozonation and sand filtration with activated sludge treatment gave efficient removal (>80%) of all the target compounds except carbamazepine and diethyltoluamide. Among all the steps in the plant, ozonation contributed substantially to overall removal of naproxen, ketoprofen, triclosan, crotamiton, sulfapyridine, macrolide antibiotics, and estrone.
我们对一家正在运行的城市污水处理厂(STP)中砂滤和臭氧化过程中24种药物活性化合物(PhACs)的去除效率进行了研究。目标化合物包括2种酚类防腐剂(百里酚、三氯生)、5种酸性镇痛药或抗炎药(布洛芬、萘普生、酮洛芬、非诺洛芬、甲芬那酸)、4种酰胺类药物(安替比林、克罗米通、卡马西平、二乙甲苯酰胺)、7种抗生素(磺胺吡啶、磺胺甲恶唑、甲氧苄啶、阿奇霉素、红霉素酸酐、克拉霉素、罗红霉素)、3种酚类内分泌干扰物(EDCs)(壬基酚:NP、辛基酚:OP、双酚A:BPA)以及3种天然雌激素(17β - 雌二醇:E2、雌酮:E1、雌三醇:E3)。臭氧化去除了约80%或更多的酚类防腐剂、克罗米通、磺胺类和大环内酯类抗生素以及17β - 雌二醇。从化学结构方面对它们的去除情况进行了讨论。该研究确定了先前研究提出的臭氧化机制在实际运行的污水处理厂中的有效性。具有碳 - 碳双键或带有电子供体(如苯酚、烷基、甲氧基或非质子化胺)的芳香结构的化合物易于被臭氧化。具有酰胺结构的化合物具有抗性。砂滤过程中PhACs的去除通常效率较低,可能是因为它们的疏水性较低。臭氧化与砂滤以及活性污泥处理相结合,除卡马西平和二乙甲苯酰胺外,对所有目标化合物均实现了高效去除(>80%)。在该处理厂的所有步骤中,臭氧化对萘普生、酮洛芬、三氯生、克罗米通、磺胺吡啶、大环内酯类抗生素和雌酮的总体去除起到了重要作用。