Ago Hideo, Kanaoka Yoshihide, Irikura Daisuke, Lam Bing K, Shimamura Tatsuro, Austen K Frank, Miyano Masashi
Structural Biophysics Laboratory, RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan.
Nature. 2007 Aug 2;448(7153):609-12. doi: 10.1038/nature05936. Epub 2007 Jul 15.
The cysteinyl leukotrienes, namely leukotriene (LT)C4 and its metabolites LTD4 and LTE4, the components of slow-reacting substance of anaphylaxis, are lipid mediators of smooth muscle constriction and inflammation, particularly implicated in bronchial asthma. LTC4 synthase (LTC4S), the pivotal enzyme for the biosynthesis of LTC4 (ref. 10), is an 18-kDa integral nuclear membrane protein that belongs to a superfamily of membrane-associated proteins in eicosanoid and glutathione metabolism that includes 5-lipoxygenase-activating protein, microsomal glutathione S-transferases (MGSTs), and microsomal prostaglandin E synthase 1 (ref. 13). LTC4S conjugates glutathione to LTA4, the endogenous substrate derived from arachidonic acid through the 5-lipoxygenase pathway. In contrast with MGST2 and MGST3 (refs 15, 16), LTC4S does not conjugate glutathione to xenobiotics. Here we show the atomic structure of human LTC4S in a complex with glutathione at 3.3 A resolution by X-ray crystallography and provide insights into the high substrate specificity for glutathione and LTA4 that distinguishes LTC4S from other MGSTs. The LTC4S monomer has four transmembrane alpha-helices and forms a threefold symmetric trimer as a unit with functional domains across each interface. Glutathione resides in a U-shaped conformation within an interface between adjacent monomers, and this binding is stabilized by a loop structure at the top of the interface. LTA4 would fit into the interface so that Arg 104 of one monomer activates glutathione to provide the thiolate anion that attacks C6 of LTA4 to form a thioether bond, and Arg 31 in the neighbouring monomer donates a proton to form a hydroxyl group at C5, resulting in 5(S)-hydroxy-6(R)-S-glutathionyl-7,9-trans-11,14-cis-eicosatetraenoic acid (LTC4). These findings provide a structural basis for the development of LTC4S inhibitors for a proinflammatory pathway mediated by three cysteinyl leukotriene ligands whose stability and potency are different and by multiple cysteinyl leukotriene receptors whose functions may be non-redundant.
半胱氨酰白三烯,即白三烯(LT)C4及其代谢产物LTD4和LTE4,是过敏反应慢反应物质的组成成分,是平滑肌收缩和炎症的脂质介质,尤其与支气管哮喘有关。LTC4合成酶(LTC4S)是LTC4生物合成的关键酶(参考文献10),是一种18 kDa的整合核膜蛋白,属于类花生酸和谷胱甘肽代谢中膜相关蛋白超家族,该超家族包括5-脂氧合酶激活蛋白、微粒体谷胱甘肽S-转移酶(MGSTs)和微粒体前列腺素E合酶1(参考文献13)。LTC4S将谷胱甘肽与LTA4结合,LTA4是通过5-脂氧合酶途径从花生四烯酸衍生而来的内源性底物。与MGST2和MGST3(参考文献15、16)不同,LTC4S不会将谷胱甘肽与外源性物质结合。在这里,我们通过X射线晶体学展示了人LTC4S与谷胱甘肽复合物的原子结构,分辨率为3.3 Å,并深入了解了LTC4S与其他MGSTs相比对谷胱甘肽和LTA4的高底物特异性。LTC4S单体有四个跨膜α螺旋,并形成一个三重对称三聚体,作为一个单元,每个界面都有功能域。谷胱甘肽以U形构象存在于相邻单体之间的界面内,这种结合通过界面顶部的环结构得以稳定。LTA4将适合该界面,使得一个单体的精氨酸104激活谷胱甘肽以提供硫醇阴离子,该阴离子攻击LTA4的C6形成硫醚键,相邻单体中的精氨酸31提供一个质子在C5形成羟基,从而生成5(S)-羟基-6(R)-S-谷胱甘肽基-7,9-反式-11,14-顺式-二十碳四烯酸(LTC4)。这些发现为开发LTC4S抑制剂提供了结构基础,该抑制剂针对由三种稳定性和效力不同的半胱氨酰白三烯配体介导的促炎途径,以及针对功能可能非冗余的多种半胱氨酰白三烯受体。