King Gary, Gakidou Emmanuela, Ravishankar Nirmala, Moore Ryan T, Lakin Jason, Vargas Manett, Tellez-Rojo Martha Maria, Hernandez Avila Juan Eugenio, Hernandez Avila Mauricio, Hernandez Llamas Hector
Institute for Quantitative Social Science, Harvard University, USA.
J Policy Anal Manage. 2007 Summer;26(3):479-506. doi: 10.1002/pam.20279.
We develop an approach to conducting large-scale randomized public policy experiments intended to be more robust to the political interventions that have ruined some or all parts of many similar previous efforts. Our proposed design is insulated from selection bias in some circumstances even if we lose observations; our inferences can still be unbiased even if politics disrupts any two of the three steps in our analytical procedures; and other empirical checks are available to validate the overall design. We illustrate with a design and empirical validation of an evaluation of the Mexican Seguro Popular de Salud (Universal Health Insurance)program we are conducting. Seguro Popular, which is intended to grow to provide medical care, drugs, preventative services, and financial health protection to the 50 million Mexicans without health insurance, is one of the largest health reforms of any country in the last two decades. The evaluation is also large scale, constituting one of the largest policy experiments to date and what may be the largest randomized health policy experiment ever.
我们开发了一种进行大规模随机公共政策实验的方法,旨在对那些破坏了许多类似先前努力的部分或全部的政治干预更具稳健性。我们提出的设计在某些情况下即使失去观测值也能免受选择偏差的影响;即使政治因素干扰了我们分析程序中的三个步骤中的任意两个,我们的推断仍然可以保持无偏;并且还有其他实证检验可用于验证整体设计。我们通过对正在进行的墨西哥大众健康保险(Seguro Popular de Salud)计划评估的设计和实证验证来说明这一点。大众健康保险旨在发展壮大,为5000万没有医疗保险的墨西哥人提供医疗护理、药品、预防服务和金融健康保障,是过去二十年来任何国家最大的卫生改革之一。该评估规模也很大,是迄今为止最大的政策实验之一,也可能是有史以来最大的随机卫生政策实验。