Suppr超能文献

使用皮质约束调和映射的脑图像配准

Brain image registration using cortically constrained harmonic mappings.

作者信息

Joshi Anand, Shattuck David, Thompson Paul, Leahy Richard

机构信息

Signal and Image Processing Institute, University of Southern California, Los Angeles 90089, USA.

出版信息

Inf Process Med Imaging. 2007;20:359-71. doi: 10.1007/978-3-540-73273-0_30.

Abstract

Volumetric registration of brains is required for inter-subject studies of functional and anatomical data. Intensity-driven registration typically results in some degree of misalignment of cortical and gyral folds. Increased statistical power in group studies may be achieved through improved alignment of cortical areas by using sulcal landmarks. In this paper we describe a new volumetric registration method in which cortical surfaces and sulcal landmarks are accurately aligned. We first compute a one-to-one map between the two cortical surfaces constrained by a set of user identified sulcal curves. We then extrapolate this mapping from the cortical surface to the entire brain volume using a harmonic mapping procedure. Finally, this volumetric mapping is refined using an intensity driven linear elastic registration. The resulting maps retain the one-to-one correspondence between cortical surfaces while also aligning volumetric features via the intensity-driven registration. We evaluate performance of this method in comparison to other volumetric registration methods.

摘要

脑体积配准是功能和解剖数据的受试者间研究所需的。强度驱动的配准通常会导致皮质和脑回褶皱出现一定程度的错位。通过使用脑沟标志来改善皮质区域的对齐,可以提高群体研究中的统计功效。在本文中,我们描述了一种新的体积配准方法,其中皮质表面和脑沟标志能够精确对齐。我们首先在一组用户识别的脑沟曲线的约束下,计算两个皮质表面之间的一一映射。然后,我们使用调和映射过程将此映射从皮质表面外推到整个脑体积。最后,使用强度驱动的线性弹性配准对该体积映射进行细化。所得映射保留了皮质表面之间的一一对应关系,同时还通过强度驱动的配准对齐了体积特征。我们将此方法与其他体积配准方法进行比较,评估其性能。

相似文献

1
Brain image registration using cortically constrained harmonic mappings.
Inf Process Med Imaging. 2007;20:359-71. doi: 10.1007/978-3-540-73273-0_30.
2
Surface-constrained volumetric brain registration using harmonic mappings.
IEEE Trans Med Imaging. 2007 Dec;26(12):1657-69. doi: 10.1109/tmi.2007.901432.
3
Geometry driven volumetric registration.
Inf Process Med Imaging. 2007;20:675-86. doi: 10.1007/978-3-540-73273-0_56.
4
A framework for brain registration via simultaneous surface and volume flow.
Inf Process Med Imaging. 2009;21:576-88. doi: 10.1007/978-3-642-02498-6_48.
5
Cortical surface alignment using geometry driven multispectral optical flow.
Inf Process Med Imaging. 2005;19:480-92. doi: 10.1007/11505730_40.
6
A combined surface and volumetric registration (SAVOR) framework to study cortical biomarkers and volumetric imaging data.
Med Image Comput Comput Assist Interv. 2009;12(Pt 1):713-20. doi: 10.1007/978-3-642-04268-3_88.
7
Hyperbolic harmonic brain surface registration with curvature-based landmark matching.
Inf Process Med Imaging. 2013;23:159-70. doi: 10.1007/978-3-642-38868-2_14.
8
DISCO: a coherent diffeomorphic framework for brain registration under exhaustive sulcal constraints.
Med Image Comput Comput Assist Interv. 2009;12(Pt 1):730-8. doi: 10.1007/978-3-642-04268-3_90.
9
Symmetric nonrigid image registration: application to average brain templates construction.
Med Image Comput Comput Assist Interv. 2008;11(Pt 2):897-904. doi: 10.1007/978-3-540-85990-1_108.
10
Diffeomorphic brain registration under exhaustive sulcal constraints.
IEEE Trans Med Imaging. 2011 Jun;30(6):1214-27. doi: 10.1109/TMI.2011.2108665. Epub 2011 Jan 28.

引用本文的文献

1
Surface-guided computing to analyze subcellular morphology and membrane-associated signals in 3D.
bioRxiv. 2023 Apr 20:2023.04.12.536640. doi: 10.1101/2023.04.12.536640.
4
How age of acquisition influences brain architecture in bilinguals.
J Neurolinguistics. 2015 Nov;36:35-55. doi: 10.1016/j.jneuroling.2015.05.001. Epub 2015 May 22.
5
A framework for brain registration via simultaneous surface and volume flow.
Inf Process Med Imaging. 2009;21:576-88. doi: 10.1007/978-3-642-02498-6_48.
6
Combined volumetric and surface registration.
IEEE Trans Med Imaging. 2009 Apr;28(4):508-22. doi: 10.1109/TMI.2008.2004426. Epub 2008 Aug 15.

本文引用的文献

1
CORTICAL SURFACE PARAMETERIZATION BY P-HARMONIC ENERGY MINIMIZATION.
Proc IEEE Int Symp Biomed Imaging. 2004 Apr 1;1:428-431. doi: 10.1109/ISBI.2004.1398566.
2
Deformable templates using large deformation kinematics.
IEEE Trans Image Process. 1996;5(10):1435-47. doi: 10.1109/83.536892.
3
Landmark matching via large deformation diffeomorphisms.
IEEE Trans Image Process. 2000;9(8):1357-70. doi: 10.1109/83.855431.
4
Morphometric analysis of white matter lesions in MR images: method and validation.
IEEE Trans Med Imaging. 1994;13(4):716-24. doi: 10.1109/42.363096.
5
A surface-based technique for warping three-dimensional images of the brain.
IEEE Trans Med Imaging. 1996;15(4):402-17. doi: 10.1109/42.511745.
6
Image registration based on boundary mapping.
IEEE Trans Med Imaging. 1996;15(1):112-5. doi: 10.1109/42.481446.
7
Surface-constrained volumetric brain registration using harmonic mappings.
IEEE Trans Med Imaging. 2007 Dec;26(12):1657-69. doi: 10.1109/tmi.2007.901432.
9
Automated surface matching using mutual information applied to Riemann surface structures.
Med Image Comput Comput Assist Interv. 2005;8(Pt 2):666-74. doi: 10.1007/11566489_82.
10
Implicit brain imaging.
Neuroimage. 2004;23 Suppl 1:S179-88. doi: 10.1016/j.neuroimage.2004.07.072.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验