Mémoli Facundo, Sapiro Guillermo, Thompson Paul
Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, USA.
Neuroimage. 2004;23 Suppl 1:S179-88. doi: 10.1016/j.neuroimage.2004.07.072.
We describe how implicit surface representations can be used to solve fundamental problems in brain imaging. This kind of representation is not only natural following the state-of-the-art segmentation algorithms reported in the literature to extract the different brain tissues, but it is also, as shown in this paper, the most appropriate one from the computational point of view. Examples are provided for finding constrained special curves on the cortex, such as sulcal beds, regularizing surface-based measures, such as cortical thickness, and for computing warping fields between surfaces such as the brain cortex. All these result from efficiently solving partial differential equations (PDEs) and variational problems on surfaces represented in implicit form. The implicit framework avoids the need to construct intermediate mappings between 3-D anatomical surfaces and parametric objects such planes or spheres, a complex step that introduces errors and is required by many other cortical processing approaches.
我们描述了隐式曲面表示如何用于解决脑成像中的基本问题。这种表示不仅符合文献中报道的用于提取不同脑组织的最新分割算法,而且正如本文所示,从计算角度来看也是最合适的。文中给出了一些示例,包括在皮质上寻找受约束的特殊曲线(如脑沟床)、对基于表面的测量(如皮质厚度)进行正则化,以及计算诸如脑皮质等表面之间的变形场。所有这些都是通过有效地求解以隐式形式表示的曲面上的偏微分方程(PDE)和变分问题得到的。隐式框架避免了在三维解剖表面与诸如平面或球体等参数对象之间构建中间映射的需要,而这是许多其他皮质处理方法所需要的一个复杂步骤,该步骤会引入误差。