Loeckx Dirk, Slagmolen Pieter, Maes Frederik, Vandermeulen Dirk, Suetens Paul
Medical Image Computing, Faculties of Medicine and Engineering, Katholieke Universiteit Leuven, University Hospital Gasthuisberg, Herestraat 49 - bus 7003, B-3000 Leuven, Belgium.
Inf Process Med Imaging. 2007;20:725-37. doi: 10.1007/978-3-540-73273-0_60.
We propose conditional mutual information (cMI) as a new similarity measure for nonrigid image registration. We start from a 3D joint histogram incorporating, besides the reference and floating intensity dimensions, also a spatial dimension expressing the location of the joint intensity pair in the reference image. cMI is calculated as the expectation value of the conditional mutual information between the reference and floating intensities given the spatial distribution. Validation experiments were performed comparing cMI and global MI on artificial CT/MR registrations and registrations complicated with a strong bias field; both a Parzen window and generalised partial volume kernel were used for histogram construction. In both experiments, cMI significantly outperforms global MI. Moreover, cMI is compared to global MI for the registration of three patient CT/MR datasets, using overlap and centroid distance as validation measure. The best results are obtained using cMI.
我们提出将条件互信息(cMI)作为一种用于非刚性图像配准的新相似性度量。我们从一个三维联合直方图开始,除了参考图像和浮动图像的强度维度外,还纳入了一个空间维度,该维度表示联合强度对在参考图像中的位置。cMI 被计算为给定空间分布时参考强度和浮动强度之间的条件互信息的期望值。在人工 CT/MR 配准以及存在强偏差场的复杂配准上,进行了比较 cMI 和全局互信息(global MI)的验证实验;在直方图构建中使用了 Parzen 窗和广义部分体积核。在这两个实验中,cMI 均显著优于全局互信息。此外,使用重叠度和质心距离作为验证度量,将 cMI 与全局互信息用于三个患者 CT/MR 数据集的配准进行比较。使用 cMI 获得了最佳结果。