Suppr超能文献

用于细胞生物学图像分类的随机子窗口和极端随机树

Random subwindows and extremely randomized trees for image classification in cell biology.

作者信息

Marée Raphaël, Geurts Pierre, Wehenkel Louis

机构信息

GIGA Bioinformatics Platform, University of Liege, Liege, Belgium.

出版信息

BMC Cell Biol. 2007 Jul 10;8 Suppl 1(Suppl 1):S2. doi: 10.1186/1471-2121-8-S1-S2.

Abstract

BACKGROUND

With the improvements in biosensors and high-throughput image acquisition technologies, life science laboratories are able to perform an increasing number of experiments that involve the generation of a large amount of images at different imaging modalities/scales. It stresses the need for computer vision methods that automate image classification tasks.

RESULTS

We illustrate the potential of our image classification method in cell biology by evaluating it on four datasets of images related to protein distributions or subcellular localizations, and red-blood cell shapes. Accuracy results are quite good without any specific pre-processing neither domain knowledge incorporation. The method is implemented in Java and available upon request for evaluation and research purpose.

CONCLUSION

Our method is directly applicable to any image classification problems. We foresee the use of this automatic approach as a baseline method and first try on various biological image classification problems.

摘要

背景

随着生物传感器和高通量图像采集技术的进步,生命科学实验室能够开展越来越多涉及以不同成像方式/尺度生成大量图像的实验。这凸显了对能自动执行图像分类任务的计算机视觉方法的需求。

结果

我们通过在四个与蛋白质分布或亚细胞定位以及红细胞形状相关的图像数据集上对我们的图像分类方法进行评估,展示了其在细胞生物学中的潜力。在没有任何特定预处理和领域知识融入的情况下,准确率结果相当不错。该方法用Java实现,可应要求提供用于评估和研究目的。

结论

我们的方法可直接应用于任何图像分类问题。我们预计将这种自动方法用作基线方法,并首先尝试用于各种生物图像分类问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e815/1924507/afb8d039c413/1471-2121-8-S1-S2-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验