Pike Brietta L, Heierhorst Jörg
St. Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, VIC 3065, Australia.
Mol Cell Biol. 2007 Sep;27(18):6532-45. doi: 10.1128/MCB.00471-07. Epub 2007 Jul 16.
DNA recombination plays critical roles in DNA repair and alternative telomere maintenance. Here we show that absence of the SQ/TQ cluster domain-containing protein Mdt1 (Ybl051c) renders Saccharomyces cerevisiae particularly hypersensitive to bleomycin, a drug that causes 3'-phospho-glycolate-blocked DNA double-strand breaks (DSBs). mdt1Delta also hypersensitizes partially recombination-defective cells to camptothecin-induced 3'-phospho-tyrosyl protein-blocked DSBs. Remarkably, whereas mdt1Delta cells are unable to restore broken chromosomes after bleomycin treatment, they efficiently repair "clean" endonuclease-generated DSBs. Epistasis analyses indicate that MDT1 acts in the repair of bleomycin-induced DSBs by regulating the efficiency of the homologous recombination pathway as well as telomere-related functions of the KU complex. Moreover, mdt1Delta leads to severe synthetic growth defects with a deletion of the recombination facilitator and telomere-positioning factor gene CTF18 already in the absence of exogenous DNA damage. Importantly, mdt1Delta causes a dramatic shift from the usually prevalent type II to the less-efficient type I pathway of recombinational telomere maintenance in the absence of telomerase in liquid senescence assays. As telomeres resemble protein-blocked DSBs, the results indicate that Mdt1 acts in a novel blocked-end-specific recombination pathway that is required for the efficiency of both drug-induced DSB repair and telomerase-independent telomere maintenance.
DNA重组在DNA修复和端粒维持替代机制中发挥着关键作用。在此,我们发现缺乏含SQ/TQ簇结构域的蛋白质Mdt1(Ybl051c)会使酿酒酵母对博来霉素特别敏感,博来霉素是一种可导致3'-磷酸乙醇酸阻断的DNA双链断裂(DSB)的药物。mdt1Δ突变体也会使部分重组缺陷细胞对喜树碱诱导的3'-磷酸酪氨酰蛋白阻断的DSB更加敏感。值得注意的是,虽然mdt1Δ突变体细胞在博来霉素处理后无法修复断裂的染色体,但它们能有效地修复“干净的”内切核酸酶产生的DSB。上位性分析表明,MDT1通过调节同源重组途径的效率以及KU复合体的端粒相关功能,参与博来霉素诱导的DSB的修复。此外,即使在没有外源性DNA损伤的情况下,mdt1Δ突变体与重组促进因子和端粒定位因子基因CTF18的缺失也会导致严重的合成生长缺陷。重要的是,在液体衰老试验中,在没有端粒酶的情况下,mdt1Δ突变体导致重组性端粒维持途径从通常普遍存在的II型显著转变为效率较低的I型。由于端粒类似于蛋白阻断的DSB,结果表明Mdt1在一种新的阻断末端特异性重组途径中起作用,这对于药物诱导的DSB修复效率和端粒酶非依赖性端粒维持都是必需的。