Stoica Radu Stefan, Gay Emilie, Kretzschmar André
Université Lille 1, Laboratoire Paul Painlevé, Bâtiment M3, 59855 Villeneuve d'Ascq Cedex, France.
Biom J. 2007 Aug;49(4):505-19. doi: 10.1002/bimj.200610326.
Clusters in a data point field exhibit spatially specified regions in the observation window. The method proposed in this paper addresses the cluster detection problem from the perspective of detection of these spatial regions. These regions are supposed to be formed of overlapping random disks driven by a marked point process. The distribution of such a process has two components. The first is related to the location of the disks in the field of observation and is defined as an inhomogeneous Poisson process. The second one is related to the interaction between disks and is constructed by the superposition of an area-interaction and a pairwise interaction processes. The model is applied on spatial data coming from animal epidemiology. The proposed method tackles several aspects related to cluster pattern detection: heterogeneity of data, smoothing effects, statistical descriptors, probability of cluster presence, testing for the cluster presence.
数据点场中的聚类在观测窗口中呈现出空间特定区域。本文提出的方法从这些空间区域的检测角度解决聚类检测问题。这些区域被认为是由标记点过程驱动的重叠随机圆盘形成的。这样一个过程的分布有两个组成部分。第一个与圆盘在观测场中的位置有关,被定义为非齐次泊松过程。第二个与圆盘之间的相互作用有关,由面积相互作用和成对相互作用过程的叠加构成。该模型应用于来自动物流行病学的空间数据。所提出的方法解决了与聚类模式检测相关的几个方面:数据的异质性、平滑效应、统计描述符、聚类存在的概率、聚类存在的检验。