Diggle P J, Gómez-Rubio V, Brown P E, Chetwynd A G, Gooding S
Department of Mathematics and Statistics, Lancaster University, Lancaster LA1 4YF, UK.
Biometrics. 2007 Jun;63(2):550-7. doi: 10.1111/j.1541-0420.2006.00683.x.
Methods for the statistical analysis of stationary spatial point process data are now well established, methods for nonstationary processes less so. One of many sources of nonstationary point process data is a case-control study in environmental epidemiology. In that context, the data consist of a realization of each of two spatial point processes representing the locations, within a specified geographical region, of individual cases of a disease and of controls drawn at random from the population at risk. In this article, we extend work by Baddeley, Møller, and Waagepetersen (2000, Statistica Neerlandica54, 329-350) concerning estimation of the second-order properties of a nonstationary spatial point process. First, we show how case-control data can be used to overcome the problems encountered when using the same data to estimate both a spatially varying intensity and second-order properties. Second, we propose a semiparametric method for adjusting the estimate of intensity so as to take account of explanatory variables attached to the cases and controls. Our primary focus is estimation, but we also propose a new test for spatial clustering that we show to be competitive with existing tests. We describe an application to an ecological study in which juvenile and surviving adult trees assume the roles of controls and cases.
平稳空间点过程数据的统计分析方法现已成熟,而非平稳过程的方法则不然。非平稳点过程数据的众多来源之一是环境流行病学中的病例对照研究。在这种情况下,数据由两个空间点过程的每一个的实现组成,这两个过程分别表示在特定地理区域内疾病个体病例的位置以及从高危人群中随机抽取的对照的位置。在本文中,我们扩展了Baddeley、Møller和Waagepetersen(2000年,《荷兰统计学》54卷,329 - 350页)关于非平稳空间点过程二阶性质估计的工作。首先,我们展示了如何使用病例对照数据来克服在使用相同数据估计空间变化强度和二阶性质时遇到的问题。其次,我们提出了一种半参数方法来调整强度估计,以便考虑与病例和对照相关的解释变量。我们主要关注估计,但我们还提出了一种新的空间聚类检验,我们证明它与现有检验具有竞争力。我们描述了一个在生态研究中的应用,其中幼年和成年存活树木分别扮演对照和病例的角色。