Suppr超能文献

泊松回归中过度离散的检验方法与广义泊松模型的比较

Testing approaches for overdispersion in poisson regression versus the generalized poisson model.

作者信息

Yang Zhao, Hardin James W, Addy Cheryl L, Vuong Quang H

机构信息

Premier Research Group plc., 2440 Sandy Plains Road NE, Marietta, GA 30066, USA.

出版信息

Biom J. 2007 Aug;49(4):565-84. doi: 10.1002/bimj.200610340.

Abstract

Overdispersion is a common phenomenon in Poisson modeling, and the negative binomial (NB) model is frequently used to account for overdispersion. Testing approaches (Wald test, likelihood ratio test (LRT), and score test) for overdispersion in the Poisson regression versus the NB model are available. Because the generalized Poisson (GP) model is similar to the NB model, we consider the former as an alternate model for overdispersed count data. The score test has an advantage over the LRT and the Wald test in that the score test only requires that the parameter of interest be estimated under the null hypothesis. This paper proposes a score test for overdispersion based on the GP model and compares the power of the test with the LRT and Wald tests. A simulation study indicates the score test based on asymptotic standard Normal distribution is more appropriate in practical application for higher empirical power, however, it underestimates the nominal significance level, especially in small sample situations, and examples illustrate the results of comparing the candidate tests between the Poisson and GP models. A bootstrap test is also proposed to adjust the underestimation of nominal level in the score statistic when the sample size is small. The simulation study indicates the bootstrap test has significance level closer to nominal size and has uniformly greater power than the score test based on asymptotic standard Normal distribution. From a practical perspective, we suggest that, if the score test gives even a weak indication that the Poisson model is inappropriate, say at the 0.10 significance level, we advise the more accurate bootstrap procedure as a better test for comparing whether the GP model is more appropriate than Poisson model. Finally, the Vuong test is illustrated to choose between GP and NB2 models for the same dataset.

摘要

过度离散是泊松模型中的常见现象,负二项式(NB)模型常被用于处理过度离散问题。针对泊松回归与NB模型中过度离散的检验方法( Wald检验、似然比检验(LRT)和得分检验)是可用的。由于广义泊松(GP)模型与NB模型相似,我们将前者视为过度离散计数数据的替代模型。得分检验相对于LRT和Wald检验具有优势,因为得分检验仅要求在原假设下估计感兴趣的参数。本文提出了一种基于GP模型的过度离散得分检验,并将该检验的功效与LRT和Wald检验进行比较。一项模拟研究表明,基于渐近标准正态分布的得分检验在实际应用中具有更高的经验功效,因而更为合适,然而,它低估了名义显著性水平,尤其是在小样本情况下,并且通过实例说明了泊松模型与GP模型之间候选检验的比较结果。还提出了一种自助检验,以在样本量较小时调整得分统计量中名义水平的低估问题。模拟研究表明,自助检验的显著性水平更接近名义大小,并且其功效始终大于基于渐近标准正态分布的得分检验。从实际角度来看,我们建议,如果得分检验即使给出了泊松模型不合适的微弱迹象,比如在0.10的显著性水平下,我们建议采用更精确的自助程序作为更好的检验方法,以比较GP模型是否比泊松模型更合适。最后,通过Vuong检验来说明如何为同一数据集在GP和NB2模型之间进行选择。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验