Neafsey Daniel E, Galagan James E
Microbial Analysis Group, Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA.
BMC Evol Biol. 2007 Jul 18;7:119. doi: 10.1186/1471-2148-7-119.
Natural selection has traditionally been understood as a force responsible for pushing genes to states of higher translational efficiency, whereas lower translational efficiency has been explained by neutral mutation and genetic drift. We looked for evidence of directional selection resulting in increased unpreferred codon usage (and presumably reduced translational efficiency) in three divergent clusters of eukaryotic genomes using a simple optimal-codon-based metric (Kp/Ku).
Here we show that for some genes natural selection is indeed responsible for causing accelerated unpreferred codon substitution, and document the scope of this selection. In Cryptococcus and to a lesser extent Drosophila, we find many genes showing a statistically significant signal of selection for unpreferred codon usage in one or more lineages. We did not find evidence for this type of selection in Saccharomyces. The signal of positive selection observed from unpreferred synonymous codon substitutions is coincident in Cryptococcus and Drosophila with the distribution of upstream open reading frames (uORFs), another genic feature known to reduce translational efficiency. Functional enrichment analysis of genes exhibiting low Kp/Ku ratios reveals that genes in regulatory roles are particularly subject to this type of selection.
Through genome-wide scans, we find recent selection for unpreferred codon usage at approximately 1% of genetic loci in a Cryptococcus and several genes in Drosophila. Unpreferred codons can impede translation efficiency, and we find that genes with translation-impeding uORFs are enriched for this selection signal. We find that regulatory genes are particularly likely to be subject to selection for unpreferred codon usage. Given that expression noise can propagate through regulatory cascades, and that low translational efficiency can reduce expression noise, this finding supports the hypothesis that translational efficiency may be suppressed in some cases to reduce stochastic noise in gene expression.
传统上,自然选择被理解为一种促使基因达到更高翻译效率状态的力量,而较低的翻译效率则由中性突变和遗传漂变来解释。我们使用一种基于最优密码子的简单指标(Kp/Ku),在三个不同的真核生物基因组簇中寻找导致非最优密码子使用增加(可能翻译效率降低)的定向选择证据。
我们发现,对于某些基因,自然选择确实导致了非最优密码子替换加速,并记录了这种选择的范围。在隐球菌中,以及在较小程度上在果蝇中,我们发现许多基因在一个或多个谱系中显示出非最优密码子使用选择的统计学显著信号。在酿酒酵母中未发现这种选择的证据。从非最优同义密码子替换中观察到的正选择信号在隐球菌和果蝇中与上游开放阅读框(uORF)的分布一致,uORF是另一种已知会降低翻译效率的基因特征。对低Kp/Ku比值基因的功能富集分析表明,具有调控作用的基因特别容易受到这种选择。
通过全基因组扫描,我们发现在隐球菌中约1%的基因座以及果蝇中的几个基因中存在近期对非最优密码子使用的选择。非最优密码子会阻碍翻译效率,我们发现具有阻碍翻译的uORF的基因富集了这种选择信号。我们发现调控基因特别容易受到非最优密码子使用的选择。鉴于表达噪声可通过调控级联传播,且低翻译效率可降低表达噪声,这一发现支持了以下假设:在某些情况下,翻译效率可能会被抑制以减少基因表达中的随机噪声。