School of Computing, University of Kent, Canterbury, UK.
EMBO J. 2014 Jan 7;33(1):21-34. doi: 10.1002/embj.201385651. Epub 2013 Dec 19.
Synonymous codons encode the same amino acid, but differ in other biophysical properties. The evolutionary selection of codons whose properties are optimal for a cell generates the phenomenon of codon bias. Although recent studies have shown strong effects of codon usage changes on protein expression levels and cellular physiology, no translational control mechanism is known that links codon usage to protein expression levels. Here, we demonstrate a novel translational control mechanism that responds to the speed of ribosome movement immediately after the start codon. High initiation rates are only possible if start codons are liberated sufficiently fast, thus accounting for the observation that fast codons are overrepresented in highly expressed proteins. In contrast, slow codons lead to slow liberation of the start codon by initiating ribosomes, thereby interfering with efficient translation initiation. Codon usage thus evolved as a means to optimise translation on individual mRNAs, as well as global optimisation of ribosome availability.
同义密码子编码相同的氨基酸,但在其他生物物理特性上有所不同。为了使细胞的特性达到最佳,密码子的进化选择产生了密码子偏好现象。尽管最近的研究表明密码子使用的变化对蛋白质表达水平和细胞生理有很强的影响,但目前还不知道有任何翻译控制机制将密码子使用与蛋白质表达水平联系起来。在这里,我们展示了一种新的翻译控制机制,它可以立即响应起始密码子后面核糖体的运动速度。如果起始密码子能够足够快地释放,那么高的起始率才是可能的,这就解释了为什么快速密码子在高表达蛋白中过度表达的现象。相比之下,慢速密码子会导致起始核糖体缓慢释放起始密码子,从而干扰有效的翻译起始。因此,密码子的使用是一种在个体 mRNA 上优化翻译以及核糖体可用性的全局优化的手段。