Suppr超能文献

翻译延伸可以控制真核 mRNA 的翻译起始。

Translation elongation can control translation initiation on eukaryotic mRNAs.

机构信息

School of Computing, University of Kent, Canterbury, UK.

出版信息

EMBO J. 2014 Jan 7;33(1):21-34. doi: 10.1002/embj.201385651. Epub 2013 Dec 19.

Abstract

Synonymous codons encode the same amino acid, but differ in other biophysical properties. The evolutionary selection of codons whose properties are optimal for a cell generates the phenomenon of codon bias. Although recent studies have shown strong effects of codon usage changes on protein expression levels and cellular physiology, no translational control mechanism is known that links codon usage to protein expression levels. Here, we demonstrate a novel translational control mechanism that responds to the speed of ribosome movement immediately after the start codon. High initiation rates are only possible if start codons are liberated sufficiently fast, thus accounting for the observation that fast codons are overrepresented in highly expressed proteins. In contrast, slow codons lead to slow liberation of the start codon by initiating ribosomes, thereby interfering with efficient translation initiation. Codon usage thus evolved as a means to optimise translation on individual mRNAs, as well as global optimisation of ribosome availability.

摘要

同义密码子编码相同的氨基酸,但在其他生物物理特性上有所不同。为了使细胞的特性达到最佳,密码子的进化选择产生了密码子偏好现象。尽管最近的研究表明密码子使用的变化对蛋白质表达水平和细胞生理有很强的影响,但目前还不知道有任何翻译控制机制将密码子使用与蛋白质表达水平联系起来。在这里,我们展示了一种新的翻译控制机制,它可以立即响应起始密码子后面核糖体的运动速度。如果起始密码子能够足够快地释放,那么高的起始率才是可能的,这就解释了为什么快速密码子在高表达蛋白中过度表达的现象。相比之下,慢速密码子会导致起始核糖体缓慢释放起始密码子,从而干扰有效的翻译起始。因此,密码子的使用是一种在个体 mRNA 上优化翻译以及核糖体可用性的全局优化的手段。

相似文献

1
Translation elongation can control translation initiation on eukaryotic mRNAs.
EMBO J. 2014 Jan 7;33(1):21-34. doi: 10.1002/embj.201385651. Epub 2013 Dec 19.
3
Free energy landscape of RNA binding dynamics in start codon recognition by eukaryotic ribosomal pre-initiation complex.
PLoS Comput Biol. 2021 Jun 14;17(6):e1009068. doi: 10.1371/journal.pcbi.1009068. eCollection 2021 Jun.
4
The ribosome in action: Tuning of translational efficiency and protein folding.
Protein Sci. 2016 Aug;25(8):1390-406. doi: 10.1002/pro.2950. Epub 2016 Jun 8.
5
PRRC2 proteins impact translation initiation by promoting leaky scanning.
Nucleic Acids Res. 2023 Apr 24;51(7):3391-3409. doi: 10.1093/nar/gkad135.
7
Dynamics of ribosome scanning and recycling revealed by translation complex profiling.
Nature. 2016 Jul 28;535(7613):570-4. doi: 10.1038/nature18647. Epub 2016 Jul 20.
9
Translation initiation downstream from annotated start codons in human mRNAs coevolves with the Kozak context.
Genome Res. 2020 Jul;30(7):974-984. doi: 10.1101/gr.257352.119. Epub 2020 Jul 15.
10
Efficient translation initiation dictates codon usage at gene start.
Mol Syst Biol. 2013 Jun 18;9:675. doi: 10.1038/msb.2013.32.

引用本文的文献

1
Predicting the translation efficiency of messenger RNA in mammalian cells.
Nat Biotechnol. 2025 Jul 25. doi: 10.1038/s41587-025-02712-x.
3
Disruption of tRNA biogenesis enhances proteostatic resilience, improves later-life health, and promotes longevity.
PLoS Biol. 2024 Oct 22;22(10):e3002853. doi: 10.1371/journal.pbio.3002853. eCollection 2024 Oct.
4
A synonymous mutation of rs1137070 cause the mice gene transcription and translation to decrease.
Front Mol Neurosci. 2024 Sep 18;17:1406708. doi: 10.3389/fnmol.2024.1406708. eCollection 2024.
5
Genome-wide impact of codon usage bias on translation optimization in Drosophila melanogaster.
Nat Commun. 2024 Sep 27;15(1):8329. doi: 10.1038/s41467-024-52660-4.
6
Predicting the translation efficiency of messenger RNA in mammalian cells.
bioRxiv. 2025 Jan 18:2024.08.11.607362. doi: 10.1101/2024.08.11.607362.
7
Disruption of the nascent polypeptide-associated complex leads to reduced polyglutamine aggregation and toxicity.
PLoS One. 2024 Aug 15;19(8):e0303008. doi: 10.1371/journal.pone.0303008. eCollection 2024.
8
Orb2 enables rare-codon-enriched mRNA expression during Drosophila neuron differentiation.
Nat Commun. 2024 Jun 20;15(1):5270. doi: 10.1038/s41467-024-48344-8.
9
Schlafen14 Impairs HIV-1 Expression in a Codon Usage-Dependent Manner.
Viruses. 2024 Mar 25;16(4):502. doi: 10.3390/v16040502.
10
Implications of tRNA abundance on translation elongation across bovine tissues.
Front Genet. 2023 Dec 19;14:1308048. doi: 10.3389/fgene.2023.1308048. eCollection 2023.

本文引用的文献

1
Positively charged residues are the major determinants of ribosomal velocity.
PLoS Biol. 2013;11(3):e1001508. doi: 10.1371/journal.pbio.1001508. Epub 2013 Mar 12.
2
Non-optimal codon usage affects expression, structure and function of clock protein FRQ.
Nature. 2013 Mar 7;495(7439):111-5. doi: 10.1038/nature11833. Epub 2013 Feb 17.
4
An in vivo control map for the eukaryotic mRNA translation machinery.
Mol Syst Biol. 2013;9:635. doi: 10.1038/msb.2012.73.
5
Cotranslational response to proteotoxic stress by elongation pausing of ribosomes.
Mol Cell. 2013 Feb 7;49(3):453-63. doi: 10.1016/j.molcel.2012.12.001. Epub 2013 Jan 3.
6
Widespread regulation of translation by elongation pausing in heat shock.
Mol Cell. 2013 Feb 7;49(3):439-52. doi: 10.1016/j.molcel.2012.11.028. Epub 2013 Jan 3.
7
A yeast tRNA mutant that causes pseudohyphal growth exhibits reduced rates of CAG codon translation.
Mol Microbiol. 2013 Jan;87(2):284-300. doi: 10.1111/mmi.12096. Epub 2012 Dec 4.
8
Determinants of translation elongation speed and ribosomal profiling biases in mouse embryonic stem cells.
PLoS Comput Biol. 2012;8(11):e1002755. doi: 10.1371/journal.pcbi.1002755. Epub 2012 Nov 1.
9
The architecture of eukaryotic translation.
Nucleic Acids Res. 2012 Nov 1;40(20):10098-106. doi: 10.1093/nar/gks825. Epub 2012 Sep 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验