Suppr超能文献

深入探究肌肉中的能量转换。

A closer look at energy transduction in muscle.

作者信息

Onishi Hirofumi, Morales Manuel F

机构信息

Exploratory Research for Advanced Technology "Actin-Filament Dynamics" Project, Japan Science and Technology Agency, c/o RIKEN Harima Institute SPring-8 Center, Kouto, Sayo, Hyogo 679-5148, Japan.

出版信息

Proc Natl Acad Sci U S A. 2007 Jul 31;104(31):12714-9. doi: 10.1073/pnas.0705525104. Epub 2007 Jul 18.

Abstract

Muscular force is the sum of unitary force interactions generated as filaments of myosins move forcibly along parallel filaments of actins, understanding that the free energy required comes from myosin-catalyzed ATP hydrolysis. Using results from conventional biochemistry, our own mutational studies, and diffraction images from others, we attempt, in molecular detail, an account of a unitary interaction, i.e., what happens after a traveling myosin head, bearing an ADP-P(i), reaches the next station of an actin filament in its path. We first construct a reasonable model of the myosin head and actin regions that meet to form the "weakly bound state". Separately, we consider Holmes' model of the rigor state [Holmes, K. C., Angert, I., Kull, F. J., Jahn, W. & Schröder, R. R. (2003) Nature 425, 423-427], supplemented with several heretofore missing residues, thus realizing the "strongly bound state." Comparing states suggests how influences initiated at the interface travel elsewhere in myosin to discharge various functions, including striking the actins. Overall, state change seems to occur by attachment of a hydrophobic triplet (Trp-546, Phe-547, and Pro-548) of myosin to an actin conduit with a hydrophobic guiding rail (Ile-341, Ile-345, Leu-349, and Phe-352) and the subsequent linear movement of the triplet along the rail.

摘要

肌肉力量是肌球蛋白丝沿着平行肌动蛋白丝强行移动时产生的单一力量相互作用的总和,要明白所需的自由能来自肌球蛋白催化的ATP水解。利用传统生物化学的结果、我们自己的突变研究以及其他人的衍射图像,我们试图从分子细节上描述一种单一相互作用,即携带ADP - P(i)的移动肌球蛋白头部到达其路径中肌动蛋白丝的下一个位点后会发生什么。我们首先构建了肌球蛋白头部和肌动蛋白区域的合理模型,它们相遇形成“弱结合状态”。另外,我们考虑了霍姆斯的僵直状态模型[霍姆斯,K.C.,安格特,I.,库尔,F.J.,扬,W.和施罗德,R.R.(2003年)《自然》425卷,423 - 427页],补充了几个此前缺失的残基,从而实现“强结合状态”。对不同状态的比较表明,在界面处引发的影响是如何在肌球蛋白的其他部位传播以履行各种功能的,包括撞击肌动蛋白。总体而言,状态变化似乎是通过肌球蛋白的一个疏水三联体(色氨酸 - 546、苯丙氨酸 - 547和脯氨酸 - 548)附着到带有疏水导轨(异亮氨酸 - 341、异亮氨酸 - 345、亮氨酸 - 349和苯丙氨酸 - 352)的肌动蛋白管道上,以及随后该三联体沿着导轨的线性移动而发生的。

相似文献

1
A closer look at energy transduction in muscle.深入探究肌肉中的能量转换。
Proc Natl Acad Sci U S A. 2007 Jul 31;104(31):12714-9. doi: 10.1073/pnas.0705525104. Epub 2007 Jul 18.
5
How Myosin Generates Force on Actin Filaments.肌球蛋白如何在肌动蛋白丝上产生力。
Trends Biochem Sci. 2016 Dec;41(12):989-997. doi: 10.1016/j.tibs.2016.09.006. Epub 2016 Oct 4.
9
Structural rearrangements in the active site of smooth-muscle myosin.平滑肌肌球蛋白活性位点的结构重排。
Biophys J. 2005 Sep;89(3):1882-92. doi: 10.1529/biophysj.105.059840. Epub 2005 Jun 10.

本文引用的文献

2
The molecular mechanism of muscle contraction.肌肉收缩的分子机制。
Adv Protein Chem. 2005;71:161-93. doi: 10.1016/S0065-3233(04)71005-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验