Department of Biochemistry and Molecular Biology, Mayo Clinic Rochester, 200 First Street SW, Rochester, MN 55905, USA.
BMC Genomics. 2010 Mar 15;11:172. doi: 10.1186/1471-2164-11-172.
Myosin performs ATP free energy transduction into mechanical work in the motor domain of the myosin heavy chain (MHC). Energy transduction is the definitive systemic feature of the myosin motor performed by coordinating in a time ordered sequence: ATP hydrolysis at the active site, actin affinity modulation at the actin binding site, and the lever-arm rotation of the power stroke. These functions are carried out by several conserved sub-domains within the motor domain. Single nucleotide polymorphisms (SNPs) affect the MHC sequence of many isoforms expressed in striated muscle, smooth muscle, and non-muscle tissue. The purpose of this work is to provide a rationale for using SNPs as a functional genomics tool to investigate structurefunction relationships in myosin. In particular, to discover SNP distribution over the conserved sub-domains and surmise what it implies about sub-domain stability and criticality in the energy transduction mechanism.
An automated routine identifying human nonsynonymous SNP amino acid missense substitutions for any MHC gene mined the NCBI SNP data base. The routine tested 22 MHC genes coding muscle and non-muscle isoforms and identified 89 missense mutation positions in the motor domain with 10 already implicated in heart disease and another 8 lacking sequence homology with a skeletal MHC isoform for which a crystallographic model is available. The remaining 71 SNP substitutions were found to be distributed over MHC with 22 falling outside identified functional sub-domains and 49 in or very near to myosin sub-domains assigned specific crucial functions in energy transduction. The latter includes the active site, the actin binding site, the rigid lever-arm, and regions facilitating their communication. Most MHC isoforms contained SNPs somewhere in the motor domain.
Several functional-crucial sub-domains are infiltrated by a large number of SNP substitution sites suggesting these domains are engineered by evolution to be too-robust to be disturbed by otherwise intrusive sequence changes. Two functional sub-domains are SNP-free or relatively SNP-deficient but contain many disease implicated mutants. These sub-domains are apparently highly sensitive to any missense substitution suggesting they have failed to evolve a robust sequence paradigm for performing their function.
肌球蛋白在肌球蛋白重链(MHC)的运动结构域中进行 ATP 自由能转换为机械功。能量转换是肌球蛋白运动的系统特征,通过有序地协调进行:在活性部位进行 ATP 水解,在肌动蛋白结合部位调节肌动蛋白亲和力,以及力臂旋转进行动力冲程。这些功能由运动结构域中的几个保守亚结构域执行。单核苷酸多态性(SNP)影响横纹肌、平滑肌和非肌肉组织中表达的许多同工型的 MHC 序列。这项工作的目的是提供一个理由,将 SNP 作为功能基因组学工具用于研究肌球蛋白的结构-功能关系。特别是,发现 SNP 在保守亚结构域中的分布,并推测其对能量转换机制中亚结构域稳定性和关键度的影响。
一种自动程序可以识别任何 MHC 基因的非同义 SNP 氨基酸错义替换,用于挖掘 NCBI SNP 数据库。该程序测试了 22 个编码肌肉和非肌肉同工型的 MHC 基因,并在运动结构域中确定了 89 个错义突变位置,其中 10 个已经与心脏病有关,另外 8 个与具有晶体结构模型的骨骼肌 MHC 同工型没有序列同源性。其余 71 个 SNP 替换被发现分布在 MHC 中,其中 22 个位于已确定的功能亚结构域之外,49 个位于或非常靠近分配给能量转换特定关键功能的肌球蛋白亚结构域。后者包括活性部位、肌动蛋白结合部位、刚性力臂以及促进它们通讯的区域。大多数 MHC 同工型在运动结构域的某个位置都含有 SNP。
几个功能关键的亚结构域被大量的 SNP 替换位点渗透,这表明这些结构域是通过进化设计的,过于稳健,不会受到其他侵入性序列变化的干扰。两个功能亚结构域是 SNP 免费或相对 SNP 缺乏的,但包含许多与疾病相关的突变体。这些亚结构域显然对任何错义替换都非常敏感,这表明它们未能进化出一种稳健的序列范例来执行其功能。