Suppr超能文献

大麻素配体结合亲和力与受体分布的荟萃分析:种间差异

Meta-analysis of cannabinoid ligand binding affinity and receptor distribution: interspecies differences.

作者信息

McPartland J M, Glass M, Pertwee R G

机构信息

Department of Molecular Biology, GW Pharmaceuticals, Salisbury, Wiltshire, UK.

出版信息

Br J Pharmacol. 2007 Nov;152(5):583-93. doi: 10.1038/sj.bjp.0707399. Epub 2007 Jul 16.

Abstract

A meta-analysis, unlike a literature review, synthesizes previous studies into new results. Pooled data from 211 studies measured ligand binding affinities at human (Hs) or rat (Rn) cannabinoid receptors CB1 and CB2. Cochrane methods were modified for this non-clinical analysis. Meta-regression detected data heterogeneity arising from methodological factors: use of sectioned tissues, lack of PMSF and choice of radioligand. Native brain tissues exhibited greater affinity (lower nM) than transfected cells, but the trend fell short of significance, as did the trend between centrifugation and filtration methods. Correcting for heterogeneity, mean Ki values for delta 9-tetrahydrocannabinol differed significantly between HsCB1 and RnCB1 (25.1 and 42.6 nM, respectively) but not between HsCB1 and HsCB2 (25.1 and 35.2). Mean Kd values for HsCB1, RnCB1 and HsCB2 of CP55,940 (2.5, 0.98, 0.92) and WIN55,212-2 (16.7, 2.4, 3.7) differed between HsCB1 and RnCB1 and between HsCB1 and HsCB2. SR141716A differed between HsCB1 and RnCB1 (2.9 and 1.0 nM). Anandamide at HsCB1, RnCB1 and HsCB2 (239.2, 87.7, 439.5) fell short of statistical differences due to heterogeneity. We consider these Kd and Ki values to be the most valid estimates in the literature. Sensitivity analyses did not support the numerical validity of cannabidiol, cannabinol, 2-arachidonoyl glycerol and all ligands at RnCB2. Aggregate rank order analysis of CB(1) distribution in the brain (pooled from 119 autoradiographic, immunohistochemical and in situ hybridization studies) showed denser HsCB1 expression in cognitive regions (cerebral cortex) compared to RnCB1, which was relatively richer in movement-associated areas (cerebellum, caudate-putamen). Implications of interspecies differences are discussed.

摘要

与文献综述不同,荟萃分析将先前的研究综合成新的结果。来自211项研究的汇总数据测量了人(Hs)或大鼠(Rn)大麻素受体CB1和CB2的配体结合亲和力。对Cochrane方法进行了修改以用于此项非临床分析。荟萃回归检测到由方法学因素引起的数据异质性:使用切片组织、缺乏苯甲基磺酰氟(PMSF)以及放射性配体的选择。天然脑组织比转染细胞表现出更高的亲和力(更低的纳摩尔值),但该趋势未达到显著水平,离心和过滤方法之间的趋势也是如此。校正异质性后,δ9-四氢大麻酚在HsCB1和RnCB1之间的平均Ki值有显著差异(分别为25.1和42.6纳摩尔),但在HsCB1和HsCB2之间无显著差异(分别为25.1和35.2)。CP55,940在HsCB1、RnCB1和HsCB2上的平均Kd值(2.5、0.98、0.92)以及WIN55,212-2在HsCB1、RnCB1和HsCB2上的平均Kd值(16.7、2.4、3.7)在HsCB1和RnCB1之间以及HsCB1和HsCB2之间存在差异。SR141716A在HsCB1和RnCB1之间存在差异(2.9和1.0纳摩尔)。由于异质性,花生四烯乙醇胺在HsCB1、RnCB1和HsCB2上的值(239.2、87.7、439.5)未达到统计学差异。我们认为这些Kd和Ki值是文献中最有效的估计值。敏感性分析不支持大麻二酚、大麻酚、2-花生四烯酰甘油以及所有配体在RnCB2上的数值有效性。对大脑中CB(1)分布的总体排序分析(汇总自119项放射自显影、免疫组织化学和原位杂交研究)表明,与RnCB1相比,认知区域(大脑皮层)中HsCB1的表达更密集,而RnCB1在与运动相关的区域(小脑、尾状核-壳核)中相对更丰富。讨论了种间差异的影响。

相似文献

1
Meta-analysis of cannabinoid ligand binding affinity and receptor distribution: interspecies differences.
Br J Pharmacol. 2007 Nov;152(5):583-93. doi: 10.1038/sj.bjp.0707399. Epub 2007 Jul 16.
6
Binding thermodynamics at the human cannabinoid CB1 and CB2 receptors.
Biochem Pharmacol. 2010 Feb 1;79(3):471-7. doi: 10.1016/j.bcp.2009.09.009. Epub 2009 Sep 18.
7
Therapeutic potential of cannabinoid receptor ligands: current status.
Methods Find Exp Clin Pharmacol. 2006 Apr;28(3):177-83. doi: 10.1358/mf.2006.28.3.985231.
9
Cannabinoid-mediated elevation of intracellular calcium: a structure-activity relationship.
J Pharmacol Exp Ther. 2006 May;317(2):820-9. doi: 10.1124/jpet.105.100503. Epub 2006 Jan 25.
10
Pharmacological characterization of the cannabinoid CB₁ receptor PET ligand ortholog, [³H]MePPEP.
Eur J Pharmacol. 2010 Dec 15;649(1-3):44-50. doi: 10.1016/j.ejphar.2010.08.055. Epub 2010 Sep 17.

引用本文的文献

1
Carvone derived cannabidiol enantiomers as novel anticonvulsants.
Neuropsychopharmacology. 2025 Sep 24. doi: 10.1038/s41386-025-02220-1.
2
Cannabidiol reduces synaptic strength and neuronal firing in layer V pyramidal neurons of the human cortex with drug-resistant epilepsy.
Front Pharmacol. 2025 Jul 22;16:1627465. doi: 10.3389/fphar.2025.1627465. eCollection 2025.
3
How THC works: Explaining ligand affinity for, and partial agonism of, cannabinoid receptor 1.
iScience. 2025 May 21;28(7):112706. doi: 10.1016/j.isci.2025.112706. eCollection 2025 Jul 18.
4
Pharmacokinetics of cannabidiol and its two main phase I metabolites in Connemara ponies.
Front Vet Sci. 2025 Jun 27;12:1599934. doi: 10.3389/fvets.2025.1599934. eCollection 2025.
5
Identification of a Cannabinoid Receptor 2 Allosteric Site Using Computational Modeling and Pharmacological Analysis.
ACS Pharmacol Transl Sci. 2025 Jan 28;8(2):423-434. doi: 10.1021/acsptsci.4c00547. eCollection 2025 Feb 14.
6
8
Cannabidiol Suppresses Metastatic Castration-Resistant Prostate Cancer Progression and Recurrence through Modulating Tryptophan Catabolism.
ACS Pharmacol Transl Sci. 2024 Oct 17;7(12):3902-3913. doi: 10.1021/acsptsci.4c00448. eCollection 2024 Dec 13.
10
The Potential Role of Cannabidiol in Cosmetic Dermatology: A Literature Review.
Am J Clin Dermatol. 2024 Nov;25(6):951-966. doi: 10.1007/s40257-024-00891-y. Epub 2024 Oct 5.

本文引用的文献

4
How many drug targets are there?
Nat Rev Drug Discov. 2006 Dec;5(12):993-6. doi: 10.1038/nrd2199.
5
GPR55 as a new cannabinoid receptor: still a long way to prove it.
Chem Biol Drug Des. 2006 Mar;67(3):252-3. doi: 10.1111/j.1747-0285.2006.00370.x.
6
Pharmacological actions of cannabinoids.
Handb Exp Pharmacol. 2005(168):1-51. doi: 10.1007/3-540-26573-2_1.
8
Cannabinoid CB2 receptors: immunohistochemical localization in rat brain.
Brain Res. 2006 Feb 3;1071(1):10-23. doi: 10.1016/j.brainres.2005.11.035. Epub 2006 Feb 9.
9
10
Evolutionary origins of the endocannabinoid system.
Gene. 2006 Mar 29;370:64-74. doi: 10.1016/j.gene.2005.11.004. Epub 2006 Jan 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验