Volknandt W, Vogel M, Pevsner J, Misumi Y, Ikehara Y, Zimmermann H
Ak Neurochemie, Zoologisches Institut, Universität Frankfurt, Federal Republic of Germany.
Eur J Biochem. 1991 Dec 18;202(3):855-61. doi: 10.1111/j.1432-1033.1991.tb16443.x.
A cDNA encoding a 5'-nucleotidase was identified by screening a lambda gt10 cDNA library from the electric lobe of Discopyge ommata using a cDNA probe containing the complete open reading frame coding for the rat liver enzyme. Nucleotide sequence analysis defines an open reading frame of 577 amino acids, corresponding to a calculated molecular mass of 63,833 Da. The N-terminus of the mature protein, as determined by direct protein sequencing, is preceded by 29 amino acid residues comprising a signal peptide. The C-terminus contains a stretch of hydrophobic amino acids, considered to be cleaved on post-translational modification and exchanged for glycosylphosphatidylinositol as a membrane anchor. The predicted protein contains four potential N-linked glycosylation sites. Electric ray 5'-nucleotidase shares 61% amino acid identity with the enzymes from rat liver and human placenta, and about 23% with bacterial proteins possessing 5'-nucleotidase activity and also additional enzyme activities like UDP-glucose hydrolase. Polyclonal antibodies raised against 5'-nucleotidase from mammalian sources or the electric ray electric organ reveal mutual cross-reactivity. Interestingly, there are 5-7 domains highly conserved in procaryotes and vertebrates in enzymes exhibiting 5'-nucleotidase, 3'-nucleotidase or phosphodiesterase activity. 5'-nucleotidase isolated from Torpedo electric organ hydrolyzes UDP-glucose at 8% of the rate of AMP hydrolysis. The possible phylogenetic origin of vertebrate 5'-nucleotidase from multifunctional nucleotide hydrolases is discussed.