Cahan Patrick, Rovegno Felicia, Mooney Denise, Newman John C, St Laurent Georges, McCaffrey Timothy A
Department of Internal Medicine, Washington University, St. Louis, MO 63110, USA.
Gene. 2007 Oct 15;401(1-2):12-8. doi: 10.1016/j.gene.2007.06.016. Epub 2007 Jul 3.
Microarray profiling of gene expression is a powerful tool for discovery, but the ability to manage and compare the resulting data can be problematic. Biological, experimental, and technical variations between studies of the same phenotype/phenomena create substantial differences in results. The application of conventional meta-analysis to raw microarray data is complicated by differences in the type of microarray used, gene nomenclatures, species, and analytical methods. An alternative approach to combining multiple microarray studies is to compare the published gene lists which result from the investigators' analyses of the raw data, as implemented in Lists of Lists Annotated (LOLA: www.lola.gwu.edu) and L2L (depts.washington.edu/l2l/). The present review considers both the potential value and the limitations of databasing and enabling the comparison of results from different microarray studies. Further, a major impediment to cross-study comparisons is the absence of a standard for reporting microarray study results. We propose a reporting standard: standard microarray results template (SMART), which will facilitate the integration of microarray studies.
基因表达的微阵列分析是一种强大的发现工具,但管理和比较所得数据的能力可能存在问题。对相同表型/现象的研究之间的生物学、实验和技术差异会导致结果出现实质性差异。传统的荟萃分析应用于原始微阵列数据时,会因所用微阵列类型、基因命名法、物种和分析方法的差异而变得复杂。一种结合多个微阵列研究的替代方法是比较研究人员对原始数据进行分析后得出的已发表基因列表,如在“注释列表之列表”(LOLA:www.lola.gwu.edu)和L2L(depts.washington.edu/l2l/)中所实现的那样。本综述考虑了数据库化以及实现不同微阵列研究结果比较的潜在价值和局限性。此外,跨研究比较的一个主要障碍是缺乏报告微阵列研究结果的标准。我们提出了一个报告标准:标准微阵列结果模板(SMART),这将有助于微阵列研究的整合。