Suppr超能文献

微阵列结果的荟萃分析:标准化面临的挑战、机遇及建议

Meta-analysis of microarray results: challenges, opportunities, and recommendations for standardization.

作者信息

Cahan Patrick, Rovegno Felicia, Mooney Denise, Newman John C, St Laurent Georges, McCaffrey Timothy A

机构信息

Department of Internal Medicine, Washington University, St. Louis, MO 63110, USA.

出版信息

Gene. 2007 Oct 15;401(1-2):12-8. doi: 10.1016/j.gene.2007.06.016. Epub 2007 Jul 3.

Abstract

Microarray profiling of gene expression is a powerful tool for discovery, but the ability to manage and compare the resulting data can be problematic. Biological, experimental, and technical variations between studies of the same phenotype/phenomena create substantial differences in results. The application of conventional meta-analysis to raw microarray data is complicated by differences in the type of microarray used, gene nomenclatures, species, and analytical methods. An alternative approach to combining multiple microarray studies is to compare the published gene lists which result from the investigators' analyses of the raw data, as implemented in Lists of Lists Annotated (LOLA: www.lola.gwu.edu) and L2L (depts.washington.edu/l2l/). The present review considers both the potential value and the limitations of databasing and enabling the comparison of results from different microarray studies. Further, a major impediment to cross-study comparisons is the absence of a standard for reporting microarray study results. We propose a reporting standard: standard microarray results template (SMART), which will facilitate the integration of microarray studies.

摘要

基因表达的微阵列分析是一种强大的发现工具,但管理和比较所得数据的能力可能存在问题。对相同表型/现象的研究之间的生物学、实验和技术差异会导致结果出现实质性差异。传统的荟萃分析应用于原始微阵列数据时,会因所用微阵列类型、基因命名法、物种和分析方法的差异而变得复杂。一种结合多个微阵列研究的替代方法是比较研究人员对原始数据进行分析后得出的已发表基因列表,如在“注释列表之列表”(LOLA:www.lola.gwu.edu)和L2L(depts.washington.edu/l2l/)中所实现的那样。本综述考虑了数据库化以及实现不同微阵列研究结果比较的潜在价值和局限性。此外,跨研究比较的一个主要障碍是缺乏报告微阵列研究结果的标准。我们提出了一个报告标准:标准微阵列结果模板(SMART),这将有助于微阵列研究的整合。

相似文献

1
Meta-analysis of microarray results: challenges, opportunities, and recommendations for standardization.
Gene. 2007 Oct 15;401(1-2):12-8. doi: 10.1016/j.gene.2007.06.016. Epub 2007 Jul 3.
2
L2L: a simple tool for discovering the hidden significance in microarray expression data.
Genome Biol. 2005;6(9):R81. doi: 10.1186/gb-2005-6-9-r81. Epub 2005 Aug 31.
3
List of lists-annotated (LOLA): a database for annotation and comparison of published microarray gene lists.
Gene. 2005 Oct 24;360(1):78-82. doi: 10.1016/j.gene.2005.07.008. Epub 2005 Sep 2.
5
MADGene: retrieval and processing of gene identifier lists for the analysis of heterogeneous microarray datasets.
Bioinformatics. 2011 Mar 1;27(5):725-6. doi: 10.1093/bioinformatics/btq710. Epub 2011 Jan 6.
6
Combining Affymetrix microarray results.
BMC Bioinformatics. 2005 Mar 17;6:57. doi: 10.1186/1471-2105-6-57.
7
Comprehensive literature review and statistical considerations for microarray meta-analysis.
Nucleic Acids Res. 2012 May;40(9):3785-99. doi: 10.1093/nar/gkr1265. Epub 2012 Jan 19.
10
MAAMD: a workflow to standardize meta-analyses and comparison of affymetrix microarray data.
BMC Bioinformatics. 2014 Mar 12;15:69. doi: 10.1186/1471-2105-15-69.

引用本文的文献

1
Bioinformatic meta-analysis reveals novel differentially expressed genes and pathways in sarcoidosis.
Front Med (Lausanne). 2024 Jun 13;11:1381031. doi: 10.3389/fmed.2024.1381031. eCollection 2024.
2
Candidate MicroRNA Biomarkers in Lupus Nephritis: A Meta-analysis of Profiling Studies in Kidney, Blood and Urine Samples.
Mol Diagn Ther. 2023 Mar;27(2):141-158. doi: 10.1007/s40291-022-00627-w. Epub 2022 Dec 15.
3
Meta-Analysis of Whole Blood Transcriptome Datasets Characterizes the Immune Response of Respiratory Syncytial Virus Infection in Children.
Front Cell Infect Microbiol. 2022 Apr 13;12:878430. doi: 10.3389/fcimb.2022.878430. eCollection 2022.
6
Comparative transcriptome analysis of SARS-CoV, MERS-CoV, and SARS-CoV-2 to identify potential pathways for drug repurposing.
Comput Biol Med. 2021 Jan;128:104123. doi: 10.1016/j.compbiomed.2020.104123. Epub 2020 Nov 24.
7
BIOMEX: an interactive workflow for (single cell) omics data interpretation and visualization.
Nucleic Acids Res. 2020 Jul 2;48(W1):W385-W394. doi: 10.1093/nar/gkaa332.
9
Clust: automatic extraction of optimal co-expressed gene clusters from gene expression data.
Genome Biol. 2018 Oct 25;19(1):172. doi: 10.1186/s13059-018-1536-8.
10
Identifying differentially expressed genes from cross-site integrated data based on relative expression orderings.
Int J Biol Sci. 2018 May 22;14(8):892-900. doi: 10.7150/ijbs.24548. eCollection 2018.

本文引用的文献

1
ArrayExpress--a public database of microarray experiments and gene expression profiles.
Nucleic Acids Res. 2007 Jan;35(Database issue):D747-50. doi: 10.1093/nar/gkl995. Epub 2006 Nov 28.
2
Lack of correct data format and comparability limits future integrative microarray research.
Nat Biotechnol. 2006 Nov;24(11):1322-3. doi: 10.1038/nbt1106-1322.
3
Gene Aging Nexus: a web database and data mining platform for microarray data on aging.
Nucleic Acids Res. 2007 Jan;35(Database issue):D756-9. doi: 10.1093/nar/gkl798. Epub 2006 Nov 7.
4
A simple spreadsheet-based, MIAME-supportive format for microarray data: MAGE-TAB.
BMC Bioinformatics. 2006 Nov 6;7:489. doi: 10.1186/1471-2105-7-489.
5
Comparative microarray analysis.
OMICS. 2006 Fall;10(3):381-97. doi: 10.1089/omi.2006.10.381.
8
Evaluation of DNA microarray results with quantitative gene expression platforms.
Nat Biotechnol. 2006 Sep;24(9):1115-22. doi: 10.1038/nbt1236.
9
MGED standards: work in progress.
OMICS. 2006 Summer;10(2):138-44. doi: 10.1089/omi.2006.10.138.
10
Cockayne syndrome group B protein (CSB) plays a general role in chromatin maintenance and remodeling.
Proc Natl Acad Sci U S A. 2006 Jun 20;103(25):9613-8. doi: 10.1073/pnas.0510909103. Epub 2006 Jun 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验