Suppr超能文献

使用图形链模型对基因-基因相互作用进行建模。

Modeling gene-gene interactions using graphical chain models.

作者信息

Foraita Ronja, Bammann Karin, Pigeot Iris

机构信息

Bremen Institute for Prevention Research and Social Medicine, University of Bremen, Bremen, Germany.

出版信息

Hum Hered. 2008;65(1):47-56. doi: 10.1159/000106061. Epub 2007 Jul 25.

Abstract

OBJECTIVE

To investigate whether graphical chain models are suitable to detect gene-gene interaction under different biological models.

METHODS

We conducted a simulation study comparing graphical chain models with logistic regression models regarding their ability to detect underlying biological interaction models. For both methods, we attempted to capture simulation data following 12 different biological models. We used 10 statistical models for both methods. Of the 12 different biological models, four contained no interaction effects, two were multiplicative, and six were epistasis models. For each situation, the choice for a statistical model was based on global model fit as judged by two different information criteria, the BIC and the AIC.

RESULTS

Both methods failed in most of the scenarios to capture the gene-gene interaction present in the simulation data. Only in very specific cases, when disease risk was high and both genes had a dominant effect, present gene-gene interaction was detected.

CONCLUSIONS

Graphical chain models are, similar to logistic regression models, not able to capture gene-gene interactions for arbitrary biological models underlying the data.

摘要

目的

研究图形链模型是否适用于检测不同生物学模型下的基因-基因相互作用。

方法

我们进行了一项模拟研究,比较图形链模型和逻辑回归模型在检测潜在生物学相互作用模型方面的能力。对于这两种方法,我们尝试获取遵循12种不同生物学模型的模拟数据。两种方法均使用10种统计模型。在这12种不同的生物学模型中,4种不包含相互作用效应,2种是乘法模型,6种是上位性模型。对于每种情况,统计模型的选择基于由两种不同信息准则(BIC和AIC)判断的全局模型拟合情况。

结果

在大多数情况下,两种方法都未能捕捉到模拟数据中存在的基因-基因相互作用。仅在非常特殊的情况下,即疾病风险较高且两个基因都具有显性效应时,才检测到存在的基因-基因相互作用。

结论

与逻辑回归模型类似,图形链模型无法捕捉数据背后任意生物学模型的基因-基因相互作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验