Suppr超能文献

使用基于熵的方法探索基因-基因相互作用效应。

Exploration of gene-gene interaction effects using entropy-based methods.

作者信息

Dong Changzheng, Chu Xun, Wang Ying, Wang Yi, Jin Li, Shi Tieliu, Huang Wei, Li Yixue

机构信息

Bioinformatics Center, Key Lab of Systems Biology, Shanghai Institutes for Biological Sciences, the Chinese Academy of Sciences, Shanghai, China.

出版信息

Eur J Hum Genet. 2008 Feb;16(2):229-35. doi: 10.1038/sj.ejhg.5201921. Epub 2007 Oct 31.

Abstract

Gene-gene interaction may play important roles in complex disease studies, in which interaction effects coupled with single-gene effects are active. Many interaction models have been proposed since the beginning of the last century. However, the existing approaches including statistical and data mining methods rarely consider genetic interaction models, which make the interaction results lack biological or genetic meaning. In this study, we developed an entropy-based method integrating two-locus genetic models to explore such interaction effects. We performed our method to simulated and real data for evaluation. Simulation results show that this method is effective to detect gene-gene interaction and, furthermore, it is able to identify the best-fit model from various interaction models. Moreover, our method, when applied to malaria data, successfully revealed negative epistatic effect between sickle cell anemia and alpha(+)-thalassemia against malaria.

摘要

基因-基因相互作用可能在复杂疾病研究中发挥重要作用,其中相互作用效应与单基因效应共同起作用。自上世纪初以来,已经提出了许多相互作用模型。然而,现有的方法,包括统计和数据挖掘方法,很少考虑遗传相互作用模型,这使得相互作用结果缺乏生物学或遗传学意义。在本研究中,我们开发了一种基于熵的方法,整合两位点遗传模型来探索这种相互作用效应。我们将我们的方法应用于模拟数据和真实数据进行评估。模拟结果表明,该方法能有效地检测基因-基因相互作用,此外,它还能够从各种相互作用模型中识别出最佳拟合模型。此外,我们的方法应用于疟疾数据时,成功揭示了镰状细胞贫血和α(+)-地中海贫血对疟疾的负上位效应。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验