Suppr超能文献

新型图像配准质量评估器(RQE)及其在颅脑放射治疗中自动患者定位的实现方法。

Novel image registration quality evaluator (RQE) with an implementation for automated patient positioning in cranial radiation therapy.

作者信息

Wu Jian, Samant Sanjiv S

机构信息

Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, Florida 32611, USA.

出版信息

Med Phys. 2007 Jun;34(6):2099-112. doi: 10.1118/1.2736783.

Abstract

In external beam radiation therapy, digitally reconstructed radiographs (DRRs) and portal images are used to verify patient setup based either on a visual comparison or, less frequently, with automated registration algorithms. A registration algorithm can be trapped in local optima due to irregularity of patient anatomy, image noise and artifacts, and/or out-of-plane shifts, resulting in an incorrect solution. Thus, human observation, which is subjective, is still required to check the registration result. We propose to use a novel image registration quality evaluator (RQE) to automatically identify misregistrations as part of an algorithm-based decision-making process for verification of patient positioning. A RQE, based on an adaptive pattern classifier, is generated from a pair of reference and target images to determine the acceptability of a registration solution given an optimization process. Here we applied our RQE to patient positioning for cranial radiation therapy. We constructed two RQEs-one for the evaluation of intramodal registrations (i.e., portal-portal); the other for intermodal registrations (i.e., portal-DRR). Mutual information, because of its high discriminatory ability compared with other measures (i.e., correlation coefficient and partitioned intensity uniformity), was chosen as the test function for both RQEs. We adopted 1 mm translation and 1 degree rotation as the maximal acceptable registration errors, reflecting desirable clinical setup tolerances for cranial radiation therapy. Receiver operating characteristic analysis was used to evaluate the performance of the RQE, including computations of sensitivity and specificity. The RQEs showed very good performance for both intramodal and intermodal registrations using simulated and phantom data. The sensitivity and the specificity were 0.973 and 0.936, respectively, for the intramodal RQE using phantom data. Whereas the sensitivity and the specificity were 0.961 and 0.758, respectively, for the intermodal RQE using phantom data. Phantom experiments also indicated our RQEs detected out-of-plane deviations exceeding 2.5 mm and 2.50. A preliminary retrospective clinical study of the RQE on cranial portal imaging also yielded good sensitivity > or = 0.857) and specificity (> or = 0.987). Clinical implementation of a RQE could potentially reduce the involvement of the human observer for routine patient positioning verification, while increasing setup accuracy and reducing setup verification time.

摘要

在体外放射治疗中,数字重建射线照片(DRR)和射野图像用于基于视觉比较或(较少使用)自动配准算法来验证患者体位。由于患者解剖结构不规则、图像噪声和伪影以及/或者平面外移位,配准算法可能会陷入局部最优解,从而导致错误的结果。因此,仍然需要主观的人工观察来检查配准结果。我们建议使用一种新型的图像配准质量评估器(RQE)来自动识别配准错误,作为基于算法的患者定位验证决策过程的一部分。基于自适应模式分类器的RQE由一对参考图像和目标图像生成,以在给定优化过程的情况下确定配准解决方案的可接受性。在此,我们将我们的RQE应用于头部放射治疗的患者定位。我们构建了两个RQE——一个用于评估模态内配准(即射野-射野);另一个用于评估模态间配准(即射野-DRR)。由于互信息与其他度量(即相关系数和分区强度均匀性)相比具有较高的区分能力,因此被选为两个RQE的测试函数。我们采用1毫米平移和1度旋转作为最大可接受配准误差,这反映了头部放射治疗所需的临床体位公差。使用接收者操作特征分析来评估RQE的性能,包括计算灵敏度和特异性。使用模拟数据和模体数据时,RQE在模态内和模态间配准方面均表现出非常好的性能。使用模体数据时,模态内RQE的灵敏度和特异性分别为0.973和0.936。而使用模体数据时,模态间RQE的灵敏度和特异性分别为0.961和0.758。模体实验还表明,我们的RQE检测到平面外偏差超过2.5毫米和2.5度。对头部射野成像的RQE进行的初步回顾性临床研究也产生了良好的灵敏度(≥0.857)和特异性(≥0.987)。RQE的临床应用可能会减少人工观察者在常规患者体位验证中的参与,同时提高体位准确性并减少体位验证时间。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验