Lee Hing Wah, Arunasalam Parthiban, Laratta William P, Seetharamu Kankanhalli N, Azid Ishak A
The Malaysian Institute of Microelectronic Systems Berhad, Technology Park Malaysia, 57000 Kuala Lumpur, Malaysia.
J Biomech Eng. 2007 Aug;129(4):540-7. doi: 10.1115/1.2746376.
In this study, a hybridized neuro-genetic optimization methodology realized by embedding finite element analysis (FEA) trained artificial neural networks (ANN) into genetic algorithms (GA), is used to optimize temperature control in a ceramic based continuous flow polymerase chain reaction (CPCR) device. The CPCR device requires three thermally isolated reaction zones of 94 degrees C, 65 degrees C, and 72 degrees C for the denaturing, annealing, and extension processes, respectively, to complete a cycle of polymerase chain reaction. The most important aspect of temperature control in the CPCR is to maintain temperature distribution at each reaction zone with a precision of +/-1 degree C or better, irrespective of changing ambient conditions. Results obtained from the FEA simulation shows good comparison with published experimental work for the temperature control in each reaction zone of the microfluidic channels. The simulation data are then used to train the ANN to predict the temperature distribution of the microfluidic channel for various heater input power and fluid flow rate. Once trained, the ANN analysis is able to predict the temperature distribution in the microchannel in less than 20 min, whereas the FEA simulation takes approximately 7 h to do so. The final optimization of temperature control in the CPCR device is achieved by embedding the trained ANN results as a fitness function into GA. Finally, the GA optimized results are used to build a new FEA model for numerical simulation analysis. The simulation results for the neuro-genetic optimized CPCR model and the initial CPCR model are then compared. The neuro-genetic optimized model shows a significant improvement from the initial model, establishing the optimization method's superiority.
在本研究中,一种通过将有限元分析(FEA)训练的人工神经网络(ANN)嵌入遗传算法(GA)实现的混合神经遗传优化方法,被用于优化基于陶瓷的连续流动聚合酶链反应(CPCR)装置中的温度控制。CPCR装置分别需要94摄氏度、65摄氏度和72摄氏度的三个热隔离反应区,用于变性、退火和延伸过程,以完成一个聚合酶链反应循环。CPCR中温度控制的最重要方面是,无论环境条件如何变化,都要将每个反应区的温度分布保持在±1摄氏度或更高的精度。从FEA模拟获得的结果与已发表的关于微流体通道各反应区温度控制的实验工作具有良好的可比性。然后,利用模拟数据训练ANN,以预测微流体通道在各种加热器输入功率和流体流速下的温度分布。一旦训练完成,ANN分析能够在不到20分钟内预测微通道中的温度分布,而FEA模拟则需要大约7小时才能做到这一点。通过将训练后的ANN结果作为适应度函数嵌入GA,实现了CPCR装置温度控制的最终优化。最后,GA优化结果被用于构建一个新的FEA模型进行数值模拟分析。然后比较了神经遗传优化的CPCR模型和初始CPCR模型的模拟结果。神经遗传优化模型显示出相对于初始模型的显著改进,确立了优化方法的优越性。