Suppr超能文献

苯甲酰胺A通过抑制甲硫氨酸氨基肽酶对c-Src非受体酪氨酸激酶活性的调控。

Regulation of c-Src nonreceptor tyrosine kinase activity by bengamide A through inhibition of methionine aminopeptidases.

作者信息

Hu Xiaoyi, Dang Yongjun, Tenney Karen, Crews Phillip, Tsai Chiawei W, Sixt Katherine M, Cole Philip A, Liu Jun O

机构信息

Department of Pharmacology and Molecular Sciences, The Johns Hopkins University, School of Medicine, 725 N. Wolfe Street Baltimore, MD 21205, USA.

出版信息

Chem Biol. 2007 Jul;14(7):764-74. doi: 10.1016/j.chembiol.2007.05.010.

Abstract

Methionine aminopeptidases (MetAPs) remove the N-terminal initiator methionine during protein synthesis, a prerequisite step for N-terminal myristoylation. N-myristoylation of proto-oncogene c-Src is essential for its membrane association and proper signal transduction. We used bengamides, a family of general MetAP inhibitors, to understand the downstream physiological functions of MetAPs. c-Src from bengamide A-treated cells retained its N-terminal methionine and suffered a decrease in N-terminal myristoylation, which was accompanied by a shift of its subcellular distribution from the plasma membrane to the cytosol. Furthermore, bengamide A decreased the tyrosine kinase activities of c-Src both in vitro and in vivo and eventually delayed cell-cycle progression through G(2)/M. Thus, c-Src is a physiologically relevant substrate for MetAPs whose dysfunction is likely to account for the cell-cycle effects of MetAP inhibitors including bengamide A.

摘要

甲硫氨酸氨肽酶(MetAPs)在蛋白质合成过程中去除N端起始甲硫氨酸,这是N端肉豆蔻酰化的一个先决步骤。原癌基因c-Src的N端肉豆蔻酰化对于其膜结合和正常信号转导至关重要。我们使用苯甲酰胺类化合物(一类通用的MetAP抑制剂)来了解MetAPs的下游生理功能。来自经苯甲酰胺A处理的细胞的c-Src保留了其N端甲硫氨酸,并且N端肉豆蔻酰化减少,同时其亚细胞分布从质膜转移到细胞质中。此外,苯甲酰胺A在体外和体内均降低了c-Src的酪氨酸激酶活性,并最终延迟了细胞周期通过G(2)/M期的进程。因此,c-Src是MetAPs的一个生理相关底物,其功能障碍可能是包括苯甲酰胺A在内的MetAP抑制剂产生细胞周期效应的原因。

相似文献

2
Inhibition of Mycobacterium tuberculosis methionine aminopeptidases by bengamide derivatives.
ChemMedChem. 2011 Jun 6;6(6):1041-8. doi: 10.1002/cmdc.201100003. Epub 2011 Apr 4.
3
Structural analysis of inhibition of Mycobacterium tuberculosis methionine aminopeptidase by bengamide derivatives.
Eur J Med Chem. 2012 Jan;47(1):479-84. doi: 10.1016/j.ejmech.2011.11.017. Epub 2011 Nov 17.
4
Proteomics-based target identification: bengamides as a new class of methionine aminopeptidase inhibitors.
J Biol Chem. 2003 Dec 26;278(52):52964-71. doi: 10.1074/jbc.M309039200. Epub 2003 Oct 8.
5
Structural analysis of bengamide derivatives as inhibitors of methionine aminopeptidases.
J Med Chem. 2012 Sep 27;55(18):8021-7. doi: 10.1021/jm3008695. Epub 2012 Sep 14.
6
Inhibition of methionine aminopeptidase in C2C12 myoblasts disrupts cell integrity via increasing endoplasmic reticulum stress.
Biochim Biophys Acta Mol Cell Res. 2025 Mar;1872(3):119901. doi: 10.1016/j.bbamcr.2025.119901. Epub 2025 Jan 13.
7
The Bengamides: A Mini-Review of Natural Sources, Analogues, Biological Properties, Biosynthetic Origins, and Future Prospects.
J Nat Prod. 2017 Mar 24;80(3):740-755. doi: 10.1021/acs.jnatprod.6b00970. Epub 2017 Feb 10.
9
Peptidyl hydroxamic acids as methionine aminopeptidase inhibitors.
Bioorg Med Chem Lett. 2004 Jan 5;14(1):77-9. doi: 10.1016/j.bmcl.2003.10.031.
10
Synthesis of barbiturate-based methionine aminopeptidase-1 inhibitors.
Bioorg Med Chem Lett. 2008 Apr 1;18(7):2373-6. doi: 10.1016/j.bmcl.2008.02.066. Epub 2008 Mar 4.

引用本文的文献

1
Identification of a Cryptic Pocket in Methionine Aminopeptidase-II Using Adaptive Bandit Molecular Dynamics Simulations and Markov State Models.
ACS Omega. 2024 Jun 18;9(26):28534-28545. doi: 10.1021/acsomega.4c02516. eCollection 2024 Jul 2.
2
The Development of the Bengamides as New Antibiotics against Drug-Resistant Bacteria.
Mar Drugs. 2022 May 31;20(6):373. doi: 10.3390/md20060373.
5
Bengamides display potent activity against drug-resistant Mycobacterium tuberculosis.
Sci Rep. 2019 Oct 7;9(1):14396. doi: 10.1038/s41598-019-50748-2.
6
Synergistic Anti- Activity of Bengazole A in the Presence of Bengamide A †.
Mar Drugs. 2019 Feb 7;17(2):102. doi: 10.3390/md17020102.
7
The Bengamides: A Mini-Review of Natural Sources, Analogues, Biological Properties, Biosynthetic Origins, and Future Prospects.
J Nat Prod. 2017 Mar 24;80(3):740-755. doi: 10.1021/acs.jnatprod.6b00970. Epub 2017 Feb 10.
9
Cellular FRET-Biosensors to Detect Membrane Targeting Inhibitors of N-Myristoylated Proteins.
PLoS One. 2013 Jun 18;8(6):e66425. doi: 10.1371/journal.pone.0066425. Print 2013.
10
Pyridinylquinazolines selectively inhibit human methionine aminopeptidase-1 in cells.
J Med Chem. 2013 May 23;56(10):3996-4016. doi: 10.1021/jm400227z. Epub 2013 May 1.

本文引用的文献

1
A phase I and pharmacokinetic study of LAF389 administered to patients with advanced cancer.
Anticancer Drugs. 2007 Feb;18(2):219-25. doi: 10.1097/CAD.0b013e328010ef5b.
2
Elucidation of the function of type 1 human methionine aminopeptidase during cell cycle progression.
Proc Natl Acad Sci U S A. 2006 Nov 28;103(48):18148-53. doi: 10.1073/pnas.0608389103. Epub 2006 Nov 17.
3
Genome-wide functional analysis of human cell-cycle regulators.
Proc Natl Acad Sci U S A. 2006 Oct 3;103(40):14819-24. doi: 10.1073/pnas.0604320103. Epub 2006 Sep 25.
4
A chemical and genetic approach to the mode of action of fumagillin.
Chem Biol. 2006 Sep;13(9):1001-9. doi: 10.1016/j.chembiol.2006.07.010.
5
Fumarranol, a rearranged fumagillin analogue that inhibits angiogenesis in vivo.
J Med Chem. 2006 Sep 21;49(19):5645-8. doi: 10.1021/jm060559v.
6
Eukaryotic initiation factor 2alpha-independent pathway of stress granule induction by the natural product pateamine A.
J Biol Chem. 2006 Oct 27;281(43):32870-8. doi: 10.1074/jbc.M606149200. Epub 2006 Sep 2.
7
Identification of pyridinylpyrimidines as inhibitors of human methionine aminopeptidases.
Angew Chem Int Ed Engl. 2006 Jun 2;45(23):3772-5. doi: 10.1002/anie.200600757.
8
Chemical rescue of a mutant enzyme in living cells.
Science. 2006 Mar 3;311(5765):1293-7. doi: 10.1126/science.1122224.
9
Inhibition of eukaryotic translation initiation by the marine natural product pateamine A.
Mol Cell. 2005 Dec 9;20(5):709-22. doi: 10.1016/j.molcel.2005.10.008.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验