Campone Mario, Campion Loïc, Roché Henry, Gouraud Wilfried, Charbonnel Catherine, Magrangeas Florence, Minvielle Stéphane, Genève Jean, Martin Anne-Laure, Bataille Régis, Jézéquel Pascal
Service d'Oncologie Médicale, Centre de Lutte Contre le Cancer René Gauducheau, Bd J. Monod, 44805, Nantes-Saint Herblain Cedex, France.
Breast Cancer Res Treat. 2008 Jun;109(3):491-501. doi: 10.1007/s10549-007-9673-x. Epub 2007 Jul 21.
Breast cancer is a very heterogeneous disease, and markers for disease subtypes and therapy response remain poorly defined. For that reason, we employed a retrospective study in node-positive breast cancer to identify molecular signatures of gene expression correlating with metastatic free survival. Patients were primarily included in FEC100 (5-fluorouracil 500 mg/m(2), epirubicin 100 mg/m(2) and cyclophosphamide 500 mg/m(2)) arms of two multicentric prospective adjuvant clinical trials (PACS01 and PEGASE01-FNCLCC cooperative group). Data from nylon microarrays containing 8,032 cDNA unique sequences, representing 5,776 distinct genes, have been used to develop a predictive model for treatment outcome. We obtained the gene expression profiles for 150 of these patients, and used stringent univariate selection techniques based on Cox regression combined with principal component analysis to identify a genomic signature of metastatic relapse after adjuvant FEC100 regimen. Most of the 14 selected genes have a clear role in breast cancer, carcinogenesis or chemotherapy resistance. Six genes have been previously described in other genomic studies (UBE2C, CENPF, C16orf61 [DC13], STMN1, CCT5 and BCL2A1). Furthermore, we showed the interest of combining transcriptomic data with clinical data into a clinicogenomic model for patients subtyping. The described model adds predictive accuracy to that provided by the well-established Nottingham prognostic index or by our genomic signature alone.
乳腺癌是一种异质性很强的疾病,疾病亚型和治疗反应的标志物仍未明确界定。因此,我们对淋巴结阳性乳腺癌患者进行了一项回顾性研究,以确定与无转移生存期相关的基因表达分子特征。患者主要纳入两项多中心前瞻性辅助临床试验(PACS01和PEGASE01-FNCLCC合作组)的FEC100(氟尿嘧啶500mg/m²、表柔比星100mg/m²和环磷酰胺500mg/m²)治疗组。来自包含8032个cDNA独特序列(代表5776个不同基因)的尼龙微阵列的数据被用于建立治疗结果预测模型。我们获得了其中150例患者的基因表达谱,并使用基于Cox回归结合主成分分析的严格单变量选择技术,来确定辅助FEC100方案后转移复发的基因组特征。所选择的14个基因中的大多数在乳腺癌、致癌作用或化疗耐药性方面具有明确作用。其中6个基因先前已在其他基因组研究中被描述(UBE2C、CENPF、C16orf61 [DC13]、STMN1、CCT5和BCL2A1)。此外,我们展示了将转录组数据与临床数据相结合纳入临床基因组模型用于患者分型的价值。所描述的模型在既定的诺丁汉预后指数或单独的基因组特征所提供的预测准确性基础上进一步提高了预测准确性。