Itani Omar A, Lamb Fred S, Melvin James E, Welsh Michael J
Howard Hughes Medical Institute, Univ. of Iowa, Iowa City, IA 52242, USA.
Am J Physiol Lung Cell Mol Physiol. 2007 Oct;293(4):L991-9. doi: 10.1152/ajplung.00077.2007. Epub 2007 Jul 27.
Electrolyte transport by airway epithelia regulates the quantity and composition of liquid covering the airways. Previous data indicate that airway epithelia can absorb NaCl. At the apical membrane, cystic fibrosis transmembrane conductance regulator (CFTR) provides a pathway for Cl(-) absorption. However, the pathways for basolateral Cl(-) exit are not well understood. Earlier studies, predominantly in cell lines, have reported that the basolateral membrane contains a Cl(-) conductance. However, the properties have varied substantially in different epithelia. To better understand the basolateral Cl(-) conductance in airway epithelia, we studied primary cultures of well-differentiated human airway epithelia. The basolateral membrane contained a Cl(-) current that was inhibited by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS). The current-voltage relationship was nearly linear, and the halide selectivity was Cl(-) > Br(-) >> I(-). Several signaling pathways increased the current, including elevation of cellular levels of cAMP, activation of protein kinase C (PKC), and reduction of pH. In contrast, increasing cell Ca(2+) and inducing cell swelling had no effect. The basolateral Cl(-) current was present in both cystic fibrosis (CF) and non-CF airway epithelia. Likewise, airway epithelia from wild-type mice and mice with disrupted genes for ClC-2 or ClC-3 all showed similar Cl(-) currents. These data suggest that the basolateral membrane of airway epithelia possesses a Cl(-) conductance that is not due to CFTR, ClC-2, or ClC-3. Its regulation by cAMP and PKC signaling pathways suggests that coordinated regulation of Cl(-) conductance in both apical and basolateral membranes may be important in controlling transepithelial Cl(-) movement.
气道上皮细胞的电解质转运调节覆盖气道的液体的数量和成分。先前的数据表明气道上皮细胞可以吸收氯化钠。在顶端膜,囊性纤维化跨膜电导调节因子(CFTR)为氯离子吸收提供了一条途径。然而,基底外侧氯离子排出的途径尚未完全明确。早期研究主要在细胞系中进行,报告称基底外侧膜存在氯离子电导。然而,其特性在不同上皮细胞中差异很大。为了更好地理解气道上皮细胞基底外侧的氯离子电导,我们研究了高度分化的人气道上皮细胞的原代培养物。基底外侧膜存在一种氯离子电流,该电流可被4,4'-二异硫氰基芪-2,2'-二磺酸(DIDS)抑制。电流-电压关系近乎线性,卤化物选择性为Cl(-) > Br(-) >> I(-)。几种信号通路可增加该电流,包括细胞内cAMP水平升高、蛋白激酶C(PKC)激活以及pH降低。相反,增加细胞内钙离子浓度和诱导细胞肿胀则没有影响。囊性纤维化(CF)和非CF气道上皮细胞中均存在基底外侧氯离子电流。同样,野生型小鼠以及氯离子通道蛋白-2(ClC-2)或氯离子通道蛋白-3(ClC-3)基因缺失小鼠的气道上皮细胞都表现出相似的氯离子电流。这些数据表明气道上皮细胞的基底外侧膜具有一种氯离子电导,其并非由CFTR、ClC-2或ClC-3引起。其受cAMP和PKC信号通路的调节表明,顶端膜和基底外侧膜中氯离子电导的协同调节可能对控制跨上皮氯离子转运很重要。