Sayed Atef K, Odom Carl, Foster John W
Department of Microbiology and Immunology, University of South Alabama College of Medicine, Mobile, AL 36688, USA.
Microbiology (Reading). 2007 Aug;153(Pt 8):2584-2592. doi: 10.1099/mic.0.2007/007005-0.
Escherichia coli can survive pH 2 acid stress by using several acid resistance systems. The most efficient of these employs glutamate decarboxylase (GadA/GadB) to consume protons, and an antiporter (GadC) to exchange the intracellular decarboxylation product for external glutamic acid. Expression of the essential transcriptional activator of this system, GadE, is controlled by several regulators in a hierarchical fashion. In this study, two additional activators have been identified. The AraC-family regulators GadX and GadW, previously found to activate gadA/BC in vitro, are now shown in vivo to directly activate gadE expression, which, in turn, activates the gadA/BC genes. In vivo results using E. coli and Salmonella enterica show that these regulators actually have little direct effect on gadA and gadBC promoters. The numerous gadE induction pathways converge on a 798 bp control region situated upstream of the gadE promoter region. Deletions of this control region exposed the region between -798 and -360 nt (relative to the translational start) to be required for maximum gadE-lacZ expression in Luria-Bertani (LB) medium and to be the primary focus of GadX and GadW control. The GadE protein itself, which binds to three GAD box sequences present between -233 and -42 nt, helped activate GadE expression in LB, but only when the -798 to -360 region was absent. These regulatory regions and proteins appear to integrate a variety of physiological signals that forecast a need for GadE-dependent gene expression and acid resistance.
大肠杆菌可通过多种耐酸系统在pH 2的酸胁迫下存活。其中最有效的系统利用谷氨酸脱羧酶(GadA/GadB)消耗质子,并利用一种反向转运蛋白(GadC)将细胞内的脱羧产物与胞外谷氨酸进行交换。该系统的关键转录激活因子GadE的表达由多种调控因子以分级方式控制。在本研究中,又鉴定出了另外两种激活因子。此前发现的AraC家族调控因子GadX和GadW在体外可激活gadA/BC,现在体内实验表明它们可直接激活gadE的表达,进而激活gadA/BC基因。使用大肠杆菌和肠炎沙门氏菌进行的体内实验结果表明,这些调控因子实际上对gadA和gadBC启动子几乎没有直接影响。众多的gadE诱导途径汇聚在位于gadE启动子区域上游的一个798 bp的控制区域。删除该控制区域后发现,在Luria-Bertani(LB)培养基中,相对于翻译起始位点,-798至-360 nt之间的区域是gadE-lacZ最大表达所必需的,并且是GadX和GadW调控的主要靶点。GadE蛋白本身与-233至-42 nt之间存在的三个GAD框序列结合,有助于在LB中激活GadE的表达,但仅在-798至-360区域缺失时才起作用。这些调控区域和蛋白似乎整合了多种生理信号,预示着需要依赖GadE的基因表达和耐酸性。