Richard Hope, Foster John W
Department of Microbiology and Immunology, University of South Alabama, College of Medicine, Mobile, AL 36688, USA.
Microbiology (Reading). 2007 Sep;153(Pt 9):3154-3161. doi: 10.1099/mic.0.2007/007575-0.
Enteric bacteria must survive the extreme acid of the stomach (pH 2 or less) before entering the intestine where they can colonize and cause disease. Escherichia coli is superior to most other Enterobacteriaceae in surviving pH 2 acid stress because it has four known acid-resistance systems, the most studied of which depends on glutamic acid. Glutamate-dependent acid resistance requires glutamate decarboxylase isozymes GadA and GadB, as well as a glutamate/gamma-aminobutyric acid antiporter encoded by gadC. The regulatory protein GadE is the essential activator of the gadA and gadBC genes. The transcription of gadE, however, is controlled by numerous proteins. Two of these proteins, GadX and GadW, are AraC-family regulators whose sensory input signals are not known. Since Na(+) and K(+) play important roles in pH homeostasis, the contribution of these ions toward the regulation of this acid-resistance system was examined. The results indicated that a decrease in Na(+), but not K(+), concentration coincided with diminished acid resistance, and decreased expression of the gadE, gadA and gadBC genes. However, Na(+)-dependent regulation of these genes dissipated in the absence of GadX and GadW. Since Na(+) levels did not regulate gadX or gadW transcription, it is proposed that GadX and GadW sense intracellular Na(+) concentration or some consequence of altered Na(+) levels.
肠道细菌在进入肠道并在其中定殖和致病之前,必须在胃酸(pH值为2或更低)的极端酸性环境中存活下来。大肠杆菌在pH值为2的酸性应激环境中的存活能力优于大多数其他肠杆菌科细菌,因为它具有四种已知的耐酸系统,其中研究最多的一种依赖于谷氨酸。依赖谷氨酸的耐酸性需要谷氨酸脱羧酶同工酶GadA和GadB,以及由gadC编码的谷氨酸/γ-氨基丁酸反向转运蛋白。调节蛋白GadE是gadA和gadBC基因的必需激活剂。然而,gadE的转录受多种蛋白质的控制。其中两种蛋白质,GadX和GadW,是AraC家族的调节因子,其传感输入信号尚不清楚。由于Na(+)和K(+)在pH值稳态中起重要作用,因此研究了这些离子对该耐酸系统调节的贡献。结果表明,Na(+)浓度的降低(而非K(+)浓度的降低)与耐酸性降低以及gadE、gadA和gadBC基因的表达降低相吻合。然而,在没有GadX和GadW的情况下,这些基因的Na(+)依赖性调节作用消失。由于Na(+)水平不调节gadX或gadW的转录,因此有人提出GadX和GadW可感知细胞内Na(+)浓度或Na(+)水平改变的某些后果。