Parodi K, Ferrari A, Sommerer F, Paganetti H
Massachusetts General Hospital and Harvard Medical School, Boston 02114, USA.
Phys Med Biol. 2007 Jun 21;52(12):3369-87. doi: 10.1088/0031-9155/52/12/004. Epub 2007 May 17.
Clinical investigations on post-irradiation PET/CT (positron emission tomography/computed tomography) imaging for in vivo verification of treatment delivery and, in particular, beam range in proton therapy are underway at Massachusetts General Hospital (MGH). Within this project, we have developed a Monte Carlo framework for CT-based calculation of dose and irradiation-induced positron emitter distributions. Initial proton beam information is provided by a separate Geant4 Monte Carlo simulation modelling the treatment head. Particle transport in the patient is performed in the CT voxel geometry using the FLUKA Monte Carlo code. The implementation uses a discrete number of different tissue types with composition and mean density deduced from the CT scan. Scaling factors are introduced to account for the continuous Hounsfield unit dependence of the mass density and of the relative stopping power ratio to water used by the treatment planning system (XiO (Computerized Medical Systems Inc.)). Resulting Monte Carlo dose distributions are generally found in good correspondence with calculations of the treatment planning program, except a few cases (e.g. in the presence of air/tissue interfaces). Whereas dose is computed using standard FLUKA utilities, positron emitter distributions are calculated by internally combining proton fluence with experimental and evaluated cross-sections yielding 11C, 15O, 14O, 13N, 38K and 30P. Simulated positron emitter distributions yield PET images in good agreement with measurements. In this paper, we describe in detail the specific implementation of the FLUKA calculation framework, which may be easily adapted to handle arbitrary phase spaces of proton beams delivered by other facilities or include more reaction channels based on additional cross-section data. Further, we demonstrate the effects of different acquisition time regimes (e.g., PET imaging during or after irradiation) on the intensity and spatial distribution of the irradiation-induced beta+-activity signal for the cases of head and neck and para-spinal tumour sites.
马萨诸塞州总医院(MGH)正在开展关于放疗后正电子发射断层扫描/计算机断层扫描(PET/CT)成像的临床研究,以在体内验证治疗传递情况,尤其是质子治疗中的射束范围。在该项目中,我们开发了一个基于CT的蒙特卡罗框架,用于计算剂量和辐射诱导的正电子发射体分布。初始质子束信息由模拟治疗头的单独Geant4蒙特卡罗模拟提供。使用FLUKA蒙特卡罗代码在CT体素几何结构中进行患者体内粒子输运。该实现使用离散数量的不同组织类型,其组成和平均密度从CT扫描中推导得出。引入缩放因子以考虑质量密度以及治疗计划系统(XiO(计算机医疗系统公司))所使用的相对于水的相对阻止本领比与亨氏单位的连续依赖性。除少数情况(例如存在空气/组织界面)外,所得蒙特卡罗剂量分布通常与治疗计划程序的计算结果吻合良好。剂量使用标准FLUKA实用程序计算时,正电子发射体分布通过将质子注量与实验和评估得到的产生(^{11}C)、(^{15}O)、(^{14}O)、(^{13}N)、(^{38}K)和(^{30}P)的截面在内部进行组合来计算。模拟的正电子发射体分布产生的PET图像与测量结果吻合良好。在本文中,我们详细描述了FLUKA计算框架的具体实现,该框架可轻松适配以处理其他设施提供的质子束的任意相空间,或基于额外截面数据纳入更多反应通道。此外,我们展示了不同采集时间方案(例如放疗期间或放疗后进行PET成像)对头颈部和脊柱旁肿瘤部位的辐射诱导(\beta^+)活性信号强度和空间分布的影响。