Boscolo Daria, Kostyleva Daria, Schuy Christoph, Weber Uli, Haettner Emma, Purushothaman Sivaji, Dendooven Peter, Dickel Timo, Drozd Vasyl, Franczack Bernhard, Geissel Hans, Hornung Christine, Horst Felix, Kazantseva Erika, Kuzminchuk-Feuerstein Natalia, Lovatti Giulio, Mukha Ivan, Nociforo Chiara, Pietri Stephane, Pinto Marco, Reidel Claire-Anne, Roesch Heidi, Sokol Olga, Tanaka Yoshiki K, Weick Helmut, Zhao Jianwei, Scheidenberger Christoph, Parodi Katia, Durante Marco
GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.
University Medical Center Groningen, Groningen, Netherlands.
Nucl Instrum Methods Phys Res A. 2022 Nov 11;1043:167464. doi: 10.1016/j.nima.2022.167464. Epub 2022 Oct 1.
Owing to the favorable depth-dose distribution and the radiobiological properties of heavy ion radiation, ion beam therapy shows an improved success/toxicity ratio compared to conventional radiotherapy. The sharp dose gradients and very high doses in the Bragg peak region, which represent the larger physical advantage of ion beam therapy, make it also extremely sensitive to range uncertainties. The use of -radioactive ion beams would be ideal for simultaneous treatment and accurate online range monitoring through PET imaging. Since all the unfragmented primary ions are potentially contributing to the PET signal, these beams offer an improved image quality while preserving the physical and radiobiological advantages of the stable counterparts. The challenging production of radioactive ion beams and the difficulties in reaching high intensities, have discouraged their clinical application. In this context, the project Biomedical Applications of Radioactive ion Beams (BARB) started at GSI (Helmholtzzentrum für Schwerionenforschung GmbH) with the main goal to assess the technical feasibility and investigate possible advantages of radioactive ion beams on the pre-clinical level. During the first experimental campaign C and C beams were produced and isotopically separated with the FRagment Separator (FRS) at GSI. The -radioactive ion beams were produced with a beam purity of 99% for all the beam investigated (except one case where it was 94%) and intensities potentially sufficient to treat a small animal tumors within few minutes of irradiation time, ∼ 10 particle per spill for the C and ∼ 10 particle per spill for the C beam, respectively. The impact of different ion optical parameters on the depth dose distribution was studied with a precision water column system. In this work, the measured depth dose distributions are presented together with results from Monte Carlo simulations using the FLUKA software.
由于重离子辐射具有良好的深度剂量分布和放射生物学特性,与传统放射治疗相比,离子束治疗的成功/毒性比有所提高。布拉格峰区域的尖锐剂量梯度和非常高的剂量代表了离子束治疗的更大物理优势,但这也使其对射程不确定性极为敏感。使用放射性离子束对于通过PET成像进行同步治疗和精确的在线射程监测将是理想的。由于所有未碎片化的初级离子都可能对PET信号有贡献,这些离子束在保持稳定对应物的物理和放射生物学优势的同时,提供了更高的图像质量。放射性离子束具有挑战性的生产过程以及达到高强度的困难,阻碍了它们的临床应用。在此背景下,放射性离子束的生物医学应用(BARB)项目在GSI(亥姆霍兹重离子研究中心有限公司)启动,其主要目标是评估技术可行性,并在临床前水平研究放射性离子束可能的优势。在第一次实验活动中,使用GSI的碎片分离器(FRS)产生并同位素分离了碳-11和碳-14离子束。对于所有研究的离子束(除了一种情况为94%),放射性离子束产生时的束纯度为99%,强度在几分钟的照射时间内可能足以治疗小动物肿瘤——碳-11离子束每次溢出约为10⁷个粒子/秒,碳-14离子束每次溢出约为10⁶个粒子/秒——分别进行测量并与使用FLUKA软件的蒙特卡罗模拟结果一起呈现。在这项工作中,测量的深度剂量分布与使用FLUKA软件的蒙特卡罗模拟结果一同展示。