Suppr超能文献

基于神经网络的一类非仿射系统的自适应控制

Adaptive control of a class of nonaffine systems using neural networks.

作者信息

Yang Bong-Jun, Calise Anthony J

机构信息

School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.

出版信息

IEEE Trans Neural Netw. 2007 Jul;18(4):1149-59. doi: 10.1109/TNN.2007.899253.

Abstract

A neural control synthesis method is considered for a class of nonaffine uncertain single-input-single-output (SISO) systems. The method eliminates a fixed-point assumption and does not assume boundedness on the time derivative of a control effectiveness term. One or the other of these assumptions exist in earlier papers on this subject. Using Lyapunov's direct method, it is shown that all the signals of the closed-loop system are uniformly ultimately bounded, and that the tracking error converges to an adjustable neighborhood of the origin. Simulation with a Van Der Pol equation with nonaffine control terms illustrates the approach.

摘要

针对一类非仿射不确定单输入单输出(SISO)系统,考虑了一种神经控制综合方法。该方法消除了不动点假设,并且不假设控制有效性项的时间导数有界。关于该主题的早期论文中存在这两个假设中的一个。利用李雅普诺夫直接法,证明了闭环系统的所有信号都是一致最终有界的,并且跟踪误差收敛到原点的一个可调节邻域。对具有非仿射控制项的范德波尔方程进行仿真说明了该方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验