Suppr超能文献

应激诱导的GADD34蛋白通过哺乳动物丝氨酸/苏氨酸蛋白激酶mTOR途径抑制病毒复制。

Suppression of viral replication by stress-inducible GADD34 protein via the mammalian serine/threonine protein kinase mTOR pathway.

作者信息

Minami Kahori, Tambe Yukihiro, Watanabe Ryosuke, Isono Takahiro, Haneda Masataka, Isobe Ken-Ichi, Kobayashi Toshiyuki, Hino Okio, Okabe Hidetoshi, Chano Tokuhiro, Inoue Hirokazu

机构信息

Department of Microbiology, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan.

出版信息

J Virol. 2007 Oct;81(20):11106-15. doi: 10.1128/JVI.01063-07. Epub 2007 Aug 1.

Abstract

GADD34 is a protein that is induced by a variety of stressors, including DNA damage, heat shock, nutrient deprivation, energy depletion, and endoplasmic reticulum stress. Here, we demonstrated that GADD34 induced by vesicular stomatitis virus (VSV) infection suppressed viral replication in wild-type (WT) mouse embryo fibroblasts (MEFs), whereas replication was enhanced in GADD34-deficient (GADD34-KO) MEFs. Enhanced viral replication in GADD34-KO MEFs was reduced by retroviral gene rescue of GADD34. The level of VSV protein expression in GADD34-KO MEFs was significantly higher than that in WT MEFs. Neither phosphorylation of eIF2alpha nor cellular protein synthesis was correlated with viral replication in GADD34-KO MEFs. On the other hand, phosphorylation of S6 and 4EBP1, proteins downstream of mTOR, was suppressed by VSV infection in WT MEFs but not in GADD34-KO MEFs. GADD34 was able to associate with TSC1/2 and dephosphorylate TSC2 at Thr1462. VSV replication was higher in TSC2-null cells than in TSC2-expressing cells, and constitutively active Akt enhanced VSV replication. On the other hand, rapamycin, an mTOR inhibitor, significantly suppressed VSV replication in GADD34-KO MEFs. These findings demonstrate that GADD34 induced by VSV infection suppresses viral replication via mTOR pathway inhibition, indicating that cross talk between stress-inducible GADD34 and the mTOR signaling pathway plays a critical role in antiviral defense.

摘要

GADD34是一种由多种应激源诱导产生的蛋白质,这些应激源包括DNA损伤、热休克、营养剥夺、能量耗竭和内质网应激。在此,我们证明,水泡性口炎病毒(VSV)感染诱导产生的GADD34可抑制野生型(WT)小鼠胚胎成纤维细胞(MEF)中的病毒复制,而在GADD34缺陷型(GADD34-KO)MEF中病毒复制增强。通过逆转录病毒基因拯救GADD34,可降低GADD34-KO MEF中增强的病毒复制。GADD34-KO MEF中VSV蛋白表达水平显著高于WT MEF。在GADD34-KO MEF中,eIF2α的磷酸化和细胞蛋白质合成均与病毒复制无关。另一方面,mTOR下游的蛋白质S6和4EBP1的磷酸化在WT MEF中受到VSV感染的抑制,但在GADD34-KO MEF中未受抑制。GADD34能够与TSC1/2结合,并使TSC2的苏氨酸1462位点去磷酸化。VSV在TSC2缺失细胞中的复制高于在表达TSC2的细胞中的复制,组成型活性Akt增强了VSV复制。另一方面,mTOR抑制剂雷帕霉素显著抑制了GADD34-KO MEF中的VSV复制。这些发现表明,VSV感染诱导产生的GADD34通过抑制mTOR途径来抑制病毒复制,这表明应激诱导的GADD34与mTOR信号通路之间的相互作用在抗病毒防御中起关键作用。

相似文献

2
Suppression of viral replication by drs tumor suppressor via mTOR dependent pathway.
Cancer Lett. 2012 Jan 1;314(1):82-91. doi: 10.1016/j.canlet.2011.09.015. Epub 2011 Sep 21.
3
Gadd34 induces autophagy through the suppression of the mTOR pathway during starvation.
Biochem Biophys Res Commun. 2011 Apr 22;407(4):692-8. doi: 10.1016/j.bbrc.2011.03.077. Epub 2011 Mar 23.
7
GADD34 suppresses wound healing by upregulating expression of myosin IIA.
Transgenic Res. 2010 Aug;19(4):637-45. doi: 10.1007/s11248-009-9347-z. Epub 2009 Nov 22.
9
Shp2 negatively regulates growth in cardiomyocytes by controlling focal adhesion kinase/Src and mTOR pathways.
Circ Res. 2008 Oct 10;103(8):813-24. doi: 10.1161/CIRCRESAHA.108.179754. Epub 2008 Aug 28.

引用本文的文献

2
The Repurposing of Cellular Proteins during Enterovirus A71 Infection.
Viruses. 2023 Dec 31;16(1):75. doi: 10.3390/v16010075.
3
Enterovirus 71 Activates GADD34 via Precursor 3CD to Promote IRES-Mediated Viral Translation.
Microbiol Spectr. 2022 Feb 23;10(1):e0138821. doi: 10.1128/spectrum.01388-21. Epub 2022 Jan 5.
5
Amino Acid Metabolic Vulnerabilities in Acute and Chronic Myeloid Leukemias.
Front Oncol. 2021 Jul 1;11:694526. doi: 10.3389/fonc.2021.694526. eCollection 2021.
7
The FDA-Approved Oral Drug Nitazoxanide Amplifies Host Antiviral Responses and Inhibits Ebola Virus.
iScience. 2019 Sep 27;19:1279-1290. doi: 10.1016/j.isci.2019.07.003. Epub 2019 Aug 8.
10
Negative regulation of GADD34 on myofibroblasts during cutaneous wound healing.
Biomed Res Int. 2014;2014:137049. doi: 10.1155/2014/137049. Epub 2014 Aug 19.

本文引用的文献

2
Involvement of autophagy in viral infections: antiviral function and subversion by viruses.
J Mol Med (Berl). 2007 Aug;85(8):811-23. doi: 10.1007/s00109-007-0173-6. Epub 2007 Mar 6.
4
Tumor prone phenotype of mice deficient in a novel apoptosis-inducing gene, drs.
Carcinogenesis. 2007 Apr;28(4):777-84. doi: 10.1093/carcin/bgl211. Epub 2006 Nov 4.
5
TOR signaling in growth and metabolism.
Cell. 2006 Feb 10;124(3):471-84. doi: 10.1016/j.cell.2006.01.016.
6
Tuberous sclerosis complex: linking growth and energy signaling pathways with human disease.
Oncogene. 2005 Nov 14;24(50):7475-81. doi: 10.1038/sj.onc.1209090.
7
Signaling by target of rapamycin proteins in cell growth control.
Microbiol Mol Biol Rev. 2005 Mar;69(1):79-100. doi: 10.1128/MMBR.69.1.79-100.2005.
9
Dysregulation of the TSC-mTOR pathway in human disease.
Nat Genet. 2005 Jan;37(1):19-24. doi: 10.1038/ng1494.
10
Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex.
Genes Dev. 2004 Dec 1;18(23):2893-904. doi: 10.1101/gad.1256804. Epub 2004 Nov 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验