Sivasubramanian Arvind, Maynard Jennifer A, Gray Jeffrey J
Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA.
Proteins. 2008 Jan 1;70(1):218-30. doi: 10.1002/prot.21595.
The anthrax protective antigen (PA) is a key component of the tripartite anthrax toxin. Monoclonal antibody (mAb) 14B7 and its engineered, affinity-matured variants have been shown to be effective in blocking PA binding to cellular receptors and mitigating anthrax toxicity. Here, we perform computational structural modeling of the mAb 14B7-PA interaction. Our objectives are to determine the structure of the 14B7-PA complex, to deduce a structural explanation for the affinity maturation from the docking models, and to study the effect of inaccuracies in the antibody homology model on docking. We used the RosettaDock program to dock PA with the mAb 14B7 crystal structure or homology model. Our simulations generate two distinct binding orientations consistent with experimental residue mutations that diminish 14B7-PA binding. Furthermore, the models suggest new site-directed mutations to positively identify one of these two solutions as the correct 14B7-PA docking orientation. The models indicate that PA regions 648-660 and 712-720 may be important for 14B7 binding in addition to the known PA epitope, and the binding interfaces are similar to that seen in the PA complex with cellular receptor CMG2. Antibody residues involved in affinity maturation do not contact the antigen in the docking models, suggesting that affinity maturation in the 14B7 family does not result from direct enhancements of antibody-antigen contacts. Docking the homology model produces low-resolution representations of the crystal structure docking orientations, but homology model docking is frustrated by antibody H3 loop conformation errors. This work demonstrates the usefulness and limitations of computational structure prediction for the development of antibody therapeutics, and reemphasizes the need for flexible backbone docking algorithms to achieve high-resolution docking using homology models.
炭疽保护性抗原(PA)是三方炭疽毒素的关键组成部分。单克隆抗体(mAb)14B7及其经过工程改造的亲和力成熟变体已被证明可有效阻断PA与细胞受体的结合并减轻炭疽毒性。在此,我们对mAb 14B7与PA的相互作用进行了计算结构建模。我们的目标是确定14B7 - PA复合物的结构,从对接模型中推断亲和力成熟的结构解释,并研究抗体同源模型中的不准确性对对接的影响。我们使用RosettaDock程序将PA与mAb 14B7晶体结构或同源模型进行对接。我们的模拟产生了两种不同的结合方向,这与减少14B7 - PA结合的实验性残基突变一致。此外,这些模型还提出了新的定点突变,以确定这两种解决方案中的一种为正确的14B7 - PA对接方向。模型表明,除了已知的PA表位外,PA区域648 - 660和712 - 720可能对14B7结合很重要,并且结合界面与PA与细胞受体CMG2形成的复合物中所见的界面相似。在对接模型中,参与亲和力成熟的抗体残基不与抗原接触,这表明14B7家族中的亲和力成熟并非源于抗体 - 抗原接触的直接增强。对接同源模型会产生晶体结构对接方向的低分辨率表示,但同源模型对接因抗体H3环构象错误而受阻。这项工作证明了计算结构预测在抗体治疗开发中的有用性和局限性,并再次强调了使用灵活的主链对接算法以利用同源模型实现高分辨率对接的必要性。