Program in Molecular Biophysics, Johns Hopkins University, Baltimore, Maryland, United States of America.
PLoS One. 2011;6(8):e22477. doi: 10.1371/journal.pone.0022477. Epub 2011 Aug 2.
RosettaDock has been increasingly used in protein docking and design strategies in order to predict the structure of protein-protein interfaces. Here we test capabilities of RosettaDock 3.2, part of the newly developed Rosetta v3.2 modeling suite, against Docking Benchmark 3.0, and compare it with RosettaDock v2.3, the latest version of the previous Rosetta software package. The benchmark contains a diverse set of 116 docking targets including 22 antibody-antigen complexes, 33 enzyme-inhibitor complexes, and 60 'other' complexes. These targets were further classified by expected docking difficulty into 84 rigid-body targets, 17 medium targets, and 14 difficult targets. We carried out local docking perturbations for each target, using the unbound structures when available, in both RosettaDock v2.3 and v3.2. Overall the performances of RosettaDock v2.3 and v3.2 were similar. RosettaDock v3.2 achieved 56 docking funnels, compared to 49 in v2.3. A breakdown of docking performance by protein complex type shows that RosettaDock v3.2 achieved docking funnels for 63% of antibody-antigen targets, 62% of enzyme-inhibitor targets, and 35% of 'other' targets. In terms of docking difficulty, RosettaDock v3.2 achieved funnels for 58% of rigid-body targets, 30% of medium targets, and 14% of difficult targets. For targets that failed, we carry out additional analyses to identify the cause of failure, which showed that binding-induced backbone conformation changes account for a majority of failures. We also present a bootstrap statistical analysis that quantifies the reliability of the stochastic docking results. Finally, we demonstrate the additional functionality available in RosettaDock v3.2 by incorporating small-molecules and non-protein co-factors in docking of a smaller target set. This study marks the most extensive benchmarking of the RosettaDock module to date and establishes a baseline for future research in protein interface modeling and structure prediction.
罗塞塔 dock 已被越来越多地用于蛋白质对接和设计策略,以预测蛋白质-蛋白质界面的结构。在这里,我们测试了罗塞塔 v3.2 新开发套件中罗塞塔 dock 3.2 的功能,与对接基准测试 3.0 进行比较,并将其与罗塞塔 dock v2.3 进行比较,罗塞塔 dock v2.3 是之前罗塞塔软件包的最新版本。该基准测试包含 116 个对接目标的多样化数据集,其中包括 22 个抗体-抗原复合物、33 个酶-抑制剂复合物和 60 个“其他”复合物。这些目标进一步按照预期对接难度分为 84 个刚体目标、17 个中等目标和 14 个困难目标。我们使用可用的未结合结构对每个目标进行了局部对接扰动,在罗塞塔 dock v2.3 和 v3.2 中都进行了操作。总体而言,罗塞塔 dock v2.3 和 v3.2 的性能相似。罗塞塔 dock v3.2 获得了 56 个对接漏斗,而 v2.3 为 49 个。按蛋白质复合物类型细分对接性能显示,罗塞塔 dock v3.2 为 63%的抗体-抗原靶标、62%的酶-抑制剂靶标和 35%的“其他”靶标实现了对接漏斗。就对接难度而言,罗塞塔 dock v3.2 为 58%的刚体目标、30%的中等目标和 14%的困难目标实现了对接漏斗。对于失败的目标,我们进行了额外的分析以确定失败的原因,结果表明结合诱导的骨架构象变化是导致大多数失败的原因。我们还提供了一个引导统计分析,该分析量化了随机对接结果的可靠性。最后,我们通过在较小的目标集中对接小分子和非蛋白质辅助因子,展示了罗塞塔 dock v3.2 中的附加功能。这项研究标志着迄今为止对罗塞塔 dock 模块的最广泛基准测试,并为蛋白质界面建模和结构预测的未来研究奠定了基础。