Wang Yun, de Gironcoli Stefano, Hush Noel S, Reimers Jeffrey R
School of Chemistry and School of Molecular and Microbial Biosciences, The University of Sydney, NSW 2006, Australia.
J Am Chem Soc. 2007 Aug 29;129(34):10402-7. doi: 10.1021/ja0712367. Epub 2007 Aug 2.
The adsorption of CO on the surface of metals such as Pt(111) is of great interest owing to the industrial importance of the catalytic oxidation of pollutant CO. To date, reliable high-level calculations of this process have not been possible, a situation often referred to as the "CO/Pt(111) puzzle". Standard generalized-gradient-approximation density functional theory approaches fail to capture key details of the binding, such as the location of the adsorption site, while cluster approaches using alternative methods show some but insufficient improvement. Using a new computational methodology combining hybrid density functionals containing non-local Hartree-Fock exchange with periodic imaging plane-wave-based techniques, we demonstrate that key aspects of the adsorption of CO on Pt(111), including the identification of the absorption site and CO frequency change, can now be adequately modeled. The binding is dominated by both CO dative covalent bonding and metal-to-molecule pi back-bonding, effects requiring realistic alignment of both the molecular HOMO and LUMO orbitals with respect to the metal Fermi energy.
由于污染物一氧化碳催化氧化在工业上的重要性,一氧化碳在诸如Pt(111)等金属表面的吸附备受关注。迄今为止,对该过程进行可靠的高水平计算尚不可能,这种情况常被称为“CO/Pt(111)难题”。标准的广义梯度近似密度泛函理论方法无法捕捉到吸附的关键细节,如吸附位点的位置,而使用替代方法的团簇方法虽有一定改进但仍显不足。通过使用一种新的计算方法,将包含非局部哈特里-福克交换的混合密度泛函与基于周期性成像平面波的技术相结合,我们证明了一氧化碳在Pt(111)上吸附的关键方面,包括吸附位点的确定和一氧化碳频率变化,现在都可以得到充分的建模。这种结合主要由一氧化碳的配位共价键和金属到分子的π反馈键主导,这些效应要求分子的最高占据分子轨道(HOMO)和最低未占分子轨道(LUMO)相对于金属费米能有实际的对齐。