Stuart Christina M, Tauber Michael J, Mathies Richard A
Department of Chemistry, University of California, Berkeley, California 94720, USA.
J Phys Chem A. 2007 Aug 30;111(34):8390-400. doi: 10.1021/jp068283q. Epub 2007 Aug 4.
Resonance Raman (RR) spectroscopy is used to probe the structure and excited-state dynamics of the solvated electron in the primary liquid alcohols methanol (MeOH), ethanol (EtOH), n-propanol (n-PrOH), and n-butanol (n-BuOH). The strong resonance enhancements (>or=10(4) relative to pure solvent) of the libration, CO stretch, COH bend, CH3 bend, CH2 bend, and OH stretch reveal significant Franck-Condon coupling of the intermolecular and intramolecular vibrational modes of the solvent to the electronic excitation of the solvated electron. All enhanced bands are fully accounted for by a model of the solvated electron that is comprised of several nearby solvent molecules that are only perturbed by the presence of the electron; no new molecular species are required to explain our data. The 340 cm(-1) downshift observed for the OH stretch frequency of e-(MeOH), relative to pure solvent, strongly suggests that the methanol molecules in the first solvent shell have the hydroxyl group directed linearly toward the excess electron density. The smaller downshifts observed for e-(EtOH), e-(n-PrOH), and e-(n-BuOH) are explained in terms of a OH group that is bent 28-40 degrees from linear. The Raman cross sections and absorption spectra are modeled, lending quantitative support for the inhomogeneous origin of the broad absorption spectra, the necessity of OH local motion in all enhanced Raman modes of the alcohols, and the dominant librational response of the solvent upon photoexcitation of the electron.
共振拉曼(RR)光谱用于探测初级液态醇类(甲醇(MeOH)、乙醇(EtOH)、正丙醇(n-PrOH)和正丁醇(n-BuOH))中溶剂化电子的结构和激发态动力学。摆动、CO伸缩、COH弯曲、CH3弯曲、CH2弯曲和OH伸缩的强共振增强(相对于纯溶剂≥10⁴)揭示了溶剂的分子间和分子内振动模式与溶剂化电子的电子激发之间存在显著的弗兰克-康登耦合。所有增强谱带都可以由一个溶剂化电子模型完全解释,该模型由几个仅因电子存在而受到扰动的附近溶剂分子组成;无需新的分子物种来解释我们的数据。相对于纯溶剂,观察到e⁻(MeOH)的OH伸缩频率下移340 cm⁻¹,这强烈表明第一溶剂壳层中的甲醇分子的羟基线性指向过量电子密度。对于e⁻(EtOH)、e⁻(n-PrOH)和e⁻(n-BuOH)观察到的较小下移,是根据OH基团相对于线性方向弯曲28 - 40度来解释的。对拉曼截面和吸收光谱进行了建模,为宽吸收光谱的非均匀起源、醇类所有增强拉曼模式中OH局部运动的必要性以及电子光激发时溶剂的主要摆动响应提供了定量支持。