Malavasi Gianluca, Lusvardi Gigliola, Pedone Alfonso, Menziani Maria Cristina, Dappiaggi Monica, Gualtieri Alessandro, Menabue Ledi
Department of Chemistry and SCS Centre, University of Modena and Reggio Emilia, Via Campi 183, 41100 Modena, Italy.
J Phys Chem A. 2007 Aug 30;111(34):8401-8. doi: 10.1021/jp071528u. Epub 2007 Aug 4.
The crystallization kinetics of Na(2)O.CaO.2SiO(2) (x = 0) and 0.68ZnO.Na(2)O.CaO.2SiO(2) (x = 0.68, where x is the ZnO stoichiometric coefficient in the glass formula) bioactive glasses have been studied using both nonisothermal and isothermal methods. The results obtained from isothermal XRPD analyses have showed that the first glass crystallizes into the isochemical Na(2)CaSi(2)O(6) phase, whereas the Na(2)ZnSiO(4) crystalline phase is obtained from the Zn-rich glass, in addition to Na(2)CaSi(2)O(6). The activation energy (Ea) for the crystallization of the Na(2)O.CaO.2SiO(2) glass is 193 +/- 10 and 203 +/- 5 kJ/mol from the isothermal in situ XRPD and nonisothermal DSC experiments, respectively. The Avrami exponent n determined from the isothermal method is 1 at low temperature (530 degrees C), and its value increases linearly with temperature increase up to 2 at 607 degrees C. For the crystallization of Na(2)CaSi(2)O(6) from the Zn-containing glass, higher values of both the crystallization temperature (667 and 661 degrees C) and Ea (223 +/- 10 and 211 +/- 5 kJ/mol) have been found from the isothermal and nonisothermal methods, respectively. The Na(2)ZnSiO(4) crystalline phase crystallizes at lower temperature with respect to Na(2)CaSi(2)O(6), and the Ea value is 266 +/- 20 and 245 +/- 15 kJ/mol from the isothermal and nonisothermal methods, respectively. The results of this work show that the addition of Zn favors the crystallization from the glass at lower temperature with respect to the Zn-free glass. In fact, it causes an increase of Ea for the Na diffusion process, determined using MD simulations, and consequently an overall increase of Ea for the crystallization process of Na(2)CaSi(2)O(6). Our results show good agreement between the Ea and n values obtained with the two different methods and confirm the reliability of the nonisothermal method applied to kinetic crystallization of glassy systems. This study allows the determination of the temperature stability field of the crystalline phases with the view of creating a different glass ceramic useful in the field of bioactive materials.
采用非等温法和等温法研究了Na₂O·CaO·2SiO₂(x = 0)和0.68ZnO·Na₂O·CaO·2SiO₂(x = 0.68,其中x为玻璃配方中ZnO的化学计量系数)生物活性玻璃的晶化动力学。等温XRPD分析结果表明,第一种玻璃结晶为化学组成不变的Na₂CaSi₂O₆相,而富含Zn的玻璃除了生成Na₂CaSi₂O₆外,还生成了Na₂ZnSiO₄晶相。通过等温原位XRPD和非等温DSC实验得到,Na₂O·CaO·2SiO₂玻璃晶化的活化能(Ea)分别为193±10 kJ/mol和203±5 kJ/mol。由等温法确定的Avrami指数n在低温(530℃)时为1,其值随温度升高线性增加,在607℃时增至2。对于含Zn玻璃中Na₂CaSi₂O₆的晶化,分别通过等温法和非等温法得到的晶化温度(667℃和661℃)和Ea(223±10 kJ/mol和211±5 kJ/mol)均较高。Na₂ZnSiO₄晶相相对于Na₂CaSi₂O₆在较低温度下结晶,通过等温法和非等温法得到的Ea值分别为266±20 kJ/mol和245±15 kJ/mol。这项工作的结果表明相对于无Zn玻璃,添加Zn有利于玻璃在较低温度下结晶。实际上,它导致了用MD模拟确定的Na扩散过程的Ea增加,从而使Na₂CaSi₂O₆结晶过程的Ea总体增加。我们的结果表明,用两种不同方法得到的Ea和n值之间具有良好的一致性,并证实了应用于玻璃体系动力学晶化的非等温法的可靠性。这项研究有助于确定晶相的温度稳定性范围,以期制备出在生物活性材料领域有用的不同微晶玻璃。