Colangeli Matteo, Karlin Iliya V, Kröger Martin
ETH Zürich, Department of Materials, Polymer Physics, Zürich, Switzerland.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 May;75(5 Pt 1):051204. doi: 10.1103/PhysRevE.75.051204. Epub 2007 May 25.
Inspired by a recent hyperbolic regularization of Burnett's hydrodynamic equations [A. Bobylev, J. Stat. Phys. 124, 371 (2006)], we introduce a method to derive hyperbolic equations of linear hydrodynamics to any desired accuracy in Knudsen number. The approach is based on a dynamic invariance principle which derives exact constitutive relations for the stress tensor and heat flux, and a transformation which renders the exact equations of hydrodynamics hyperbolic and stable. The method is described in detail for a simple kinetic model -- a 13 moment Grad system.
受近期伯内特流体动力学方程的双曲正则化研究[A. 博布列夫,《统计物理杂志》124, 371 (2006)]的启发,我们引入了一种方法,可将线性流体动力学的双曲方程推导至任意所需的克努森数精度。该方法基于一个动态不变性原理,该原理可导出应力张量和热流的精确本构关系,以及一种能使流体动力学的精确方程具有双曲性和稳定性的变换。本文针对一个简单的动力学模型——13矩Grad系统详细描述了该方法。