Suppr超能文献

从双曲正则化到线性化格拉德方程的精确流体动力学

From hyperbolic regularization to exact hydrodynamics for linearized Grad's equations.

作者信息

Colangeli Matteo, Karlin Iliya V, Kröger Martin

机构信息

ETH Zürich, Department of Materials, Polymer Physics, Zürich, Switzerland.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2007 May;75(5 Pt 1):051204. doi: 10.1103/PhysRevE.75.051204. Epub 2007 May 25.

Abstract

Inspired by a recent hyperbolic regularization of Burnett's hydrodynamic equations [A. Bobylev, J. Stat. Phys. 124, 371 (2006)], we introduce a method to derive hyperbolic equations of linear hydrodynamics to any desired accuracy in Knudsen number. The approach is based on a dynamic invariance principle which derives exact constitutive relations for the stress tensor and heat flux, and a transformation which renders the exact equations of hydrodynamics hyperbolic and stable. The method is described in detail for a simple kinetic model -- a 13 moment Grad system.

摘要

受近期伯内特流体动力学方程的双曲正则化研究[A. 博布列夫,《统计物理杂志》124, 371 (2006)]的启发,我们引入了一种方法,可将线性流体动力学的双曲方程推导至任意所需的克努森数精度。该方法基于一个动态不变性原理,该原理可导出应力张量和热流的精确本构关系,以及一种能使流体动力学的精确方程具有双曲性和稳定性的变换。本文针对一个简单的动力学模型——13矩Grad系统详细描述了该方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验