Karlin Ilya
Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
Philos Trans A Math Phys Eng Sci. 2018 Apr 28;376(2118). doi: 10.1098/rsta.2017.0230.
Derivation of the dynamic correction to Grad's moment system from kinetic equations (regularized Grad's 13 moment system, or R13) is revisited. The R13 distribution function is found as a superposition of eight modes. Three primary modes, known from the previous derivation (Karlin 1998 , 1668-1672. (doi:10.1103/PhysRevE.57.1668)), are extended into the nonlinear parameter domain. Three essentially nonlinear modes are identified, and two ghost modes which do not contribute to the R13 fluxes are revealed. The eight-mode structure of the R13 distribution function implies partition of R13 fluxes into two types of contributions: dissipative fluxes (both linear and nonlinear) and nonlinear streamline convective fluxes. Physical interpretation of the latter non-dissipative and non-local in time effect is discussed. A non-perturbative R13-type solution is demonstrated for a simple Lorentz scattering kinetic model. The results of this study clarify the intrinsic structure of the R13 system.This article is part of the theme issue 'Hilbert's sixth problem'.
重新审视了从动力学方程推导Grad矩系统的动态校正(正则化Grad 13矩系统,即R13)。发现R13分布函数是八种模式的叠加。从先前的推导中已知的三种主要模式(Karlin 1998,1668 - 1672。(doi:10.1103/PhysRevE.57.1668))被扩展到非线性参数域。识别出三种本质上的非线性模式,并揭示了两种对R13通量无贡献的虚模式。R13分布函数的八模式结构意味着R13通量被分为两种贡献类型:耗散通量(线性和非线性)和非线性流线对流通量。讨论了后一种非耗散且非局部时间效应的物理解释。针对一个简单的洛伦兹散射动力学模型展示了一种非微扰的R13型解。本研究结果阐明了R13系统的内在结构。本文是“希尔伯特第六问题”主题特刊的一部分。