Perc Matjaz, Szolnoki Attila, Szabó György
Department of Physics, Faculty of Education, University of Maribor, Koroska cesta 160, Maribor, Slovenia.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 May;75(5 Pt 1):052102. doi: 10.1103/PhysRevE.75.052102. Epub 2007 May 30.
We study a six-species Lotka-Volterra-type system on different two-dimensional lattices when each species has two superior and two inferior partners. The invasion rates from predator sites to a randomly chosen neighboring prey site depend on the predator-prey pair, whereby cyclic symmetries within the two three-species defensive alliances are conserved. Monte Carlo simulations reveal an unexpected nonmonotonous dependence of alliance survival on the difference of alliance-specific invasion rates. This behavior is qualitatively reproduced by a four-point mean-field approximation. The study addresses fundamental problems of stability for the competition of two defensive alliances and thus has important implications in natural and social sciences.
我们研究了一个六物种的Lotka-Volterra型系统,该系统存在于不同的二维晶格上,其中每个物种都有两个上级伙伴和两个下级伙伴。从捕食者位点到随机选择的相邻猎物位点的入侵率取决于捕食者 - 猎物对,由此两个三物种防御联盟内的循环对称性得以保留。蒙特卡罗模拟揭示了联盟生存对联盟特定入侵率差异的意外非单调依赖性。这种行为通过四点平均场近似在定性上得以重现。该研究解决了两个防御联盟竞争的稳定性的基本问题,因此在自然科学和社会科学中具有重要意义。