Suppr超能文献

在纳维-斯托克斯α理论的一种推广中湍动能及长度尺度的可能层级结构

Turbulent kinetic energy and a possible hierarchy of length scales in a generalization of the Navier-Stokes alpha theory.

作者信息

Fried Eliot, Gurtin Morton E

机构信息

Department of Mechanical and Aerospace Engineering, Washington University in St. Louis, St. Louis, Missouri 63130-4899, USA.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2007 May;75(5 Pt 2):056306. doi: 10.1103/PhysRevE.75.056306. Epub 2007 May 15.

Abstract

We present a continuum-mechanical formulation and generalization of the Navier-Stokes alpha theory based on a general framework for fluid-dynamical theories with gradient dependencies. Our flow equation involves two additional problem-dependent length scales alpha and beta. The first of these scales enters the theory through the internal kinetic energy, per unit mass, alpha2|D|2, where D is the symmetric part of the gradient of the filtered velocity. The remaining scale is associated with a dissipative hyperstress which depends linearly on the gradient of the filtered vorticity. When alpha and beta are equal, our flow equation reduces to the Navier-Stokes alpha equation. In contrast to the original derivation of the Navier-Stokes alpha equation, which relies on Lagrangian averaging, our formulation delivers boundary conditions. For a confined flow, our boundary conditions involve an additional length scale l characteristic of the eddies found near walls. Based on a comparison with direct numerical simulations for fully developed turbulent flow in a rectangular channel of height 2h, we find that alphabeta approximately Re(0.470) and lh approximately Re(-0.772), where Re is the Reynolds number. The first result, which arises as a consequence of identifying the internal kinetic energy with the turbulent kinetic energy, indicates that the choice alpha=beta required to reduce our flow equation to the Navier-Stokes alpha equation is likely to be problematic. The second result evinces the classical scaling relation eta/L approximately Re(-3/4) for the ratio of the Kolmogorov microscale eta to the integral length scale L . The numerical data also suggests that l < or = beta . We are therefore led to conjecture a tentative hierarchy, l < or = beta < alpha , involving the three length scales entering our theory.

摘要

我们基于具有梯度相关性的流体动力学理论的通用框架,给出了纳维 - 斯托克斯α理论的连续介质力学公式及推广。我们的流动方程涉及另外两个与问题相关的长度尺度α和β。其中第一个尺度通过单位质量的内部动能α²|D|²进入理论,这里D是滤波后速度梯度的对称部分。另一个尺度与一个耗散超应力相关,该超应力线性依赖于滤波后涡度的梯度。当α和β相等时,我们的流动方程简化为纳维 - 斯托克斯α方程。与依赖拉格朗日平均的纳维 - 斯托克斯α方程的原始推导不同,我们的公式给出了边界条件。对于受限流动,我们的边界条件涉及壁面附近发现的涡旋的一个特征长度尺度l。基于与高度为2h的矩形通道中充分发展的湍流的直接数值模拟的比较,我们发现αβ≈Re(0.470)且lh≈Re(-0.772),其中Re是雷诺数。第一个结果是将内部动能与湍动能等同的结果,它表明将我们的流动方程简化为纳维 - 斯托克斯α方程所需的α = β的选择可能存在问题。第二个结果表明了经典的柯尔莫哥洛夫微尺度η与积分长度尺度L的比值的标度关系η/L≈Re(-3/4)。数值数据还表明l≤β。因此,我们推测出一个暂定的层级关系l≤β<α,涉及进入我们理论的三个长度尺度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验