Suryanarayanan Saikishan, Narasimha Roddam, Hari Dass N D
Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India.
Chennai Mathematical Institute, Kelambakkam 603103, India and CQIQC, Indian Institute of Science, Bangalore 560012, India.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Jan;89(1):013009. doi: 10.1103/PhysRevE.89.013009. Epub 2014 Jan 14.
This paper attempts to unravel any relations that may exist between turbulent shear flows and statistical mechanics through a detailed numerical investigation in the simplest case where both can be well defined. The flow considered for the purpose is the two-dimensional (2D) temporal free shear layer with a velocity difference ΔU across it, statistically homogeneous in the streamwise direction (x) and evolving from a plane vortex sheet in the direction normal to it (y) in a periodic-in-x domain L×±∞. Extensive computer simulations of the flow are carried out through appropriate initial-value problems for a "vortex gas" comprising N point vortices of the same strength (γ=LΔU/N) and sign. Such a vortex gas is known to provide weak solutions of the Euler equation. More than ten different initial-condition classes are investigated using simulations involving up to 32000 vortices, with ensemble averages evaluated over up to 103 realizations and integration over 104L/ΔU. The temporal evolution of such a system is found to exhibit three distinct regimes. In Regime I the evolution is strongly influenced by the initial condition, sometimes lasting a significant fraction of L/ΔU. Regime III is a long-time domain-dependent evolution towards a statistically stationary state, via "violent" and "slow" relaxations [ P.-H. Chavanis Physica A 391 3657 (2012)], over flow time scales of order 102 and 104L/ΔU, respectively (for N=400). The final state involves a single structure that stochastically samples the domain, possibly constituting a "relative equilibrium." The vortex distribution within the structure follows a nonisotropic truncated form of the Lundgren-Pointin (L-P) equilibrium distribution (with negatively high temperatures; L-P parameter λ close to -1). The central finding is that, in the intermediate Regime II, the spreading rate of the layer is universal over the wide range of cases considered here. The value (in terms of momentum thickness) is 0.0166±0.0002 times ΔU. Regime II, extensively studied in the turbulent shear flow literature as a self-similar "equilibrium" state, is, however, a part of the rapid nonequilibrium evolution of the vortex-gas system, which we term "explosive" as it lasts less than one L/ΔU. Regime II also exhibits significant values of N-independent two-vortex correlations, indicating that current kinetic theories that neglect correlations or consider them as O(1/N) cannot describe this regime. The evolution of the layer thickness in present simulations in Regimes I and II agree with the experimental observations of spatially evolving (3D Navier-Stokes) shear layers. Further, the vorticity-stream-function relations in Regime III are close to those computed in 2D Navier-Stokes temporal shear layers [ J. Sommeria, C. Staquet and R. Robert J. Fluid Mech. 233 661 (1991)]. These findings suggest the dominance of what may be called the Kelvin-Biot-Savart mechanism in determining the growth of the free shear layer through large-scale momentum and vorticity dispersal.
本文试图通过在最简单且两者都能得到很好定义的情形下进行详细的数值研究,来揭示湍流剪切流与统计力学之间可能存在的任何关系。为此所考虑的流动是二维(2D)时间自由剪切层,其 across 存在速度差ΔU,在流向(x)上统计均匀,并且在 x 方向周期为 L×±∞的区域中从平面涡旋片沿垂直于它的方向(y)演化。通过对由 N 个强度相同(γ = LΔU / N)且符号相同的点涡组成的“涡旋气体”进行适当的初值问题求解,对该流动进行了广泛的计算机模拟。已知这样的涡旋气体能提供欧拉方程的弱解。使用涉及多达 32000 个涡旋的模拟研究了十多种不同的初始条件类别,对多达 103 次实现进行系综平均,并在 104L / ΔU 上进行积分。发现这样一个系统的时间演化呈现出三个不同的阶段。在阶段 I 中,演化受到初始条件的强烈影响,有时会持续 L / ΔU 的很大一部分。阶段 III 是通过“剧烈”和“缓慢”弛豫[P.-H. 沙瓦尼斯,《物理学报 A》391 3657(2012)]朝着统计稳态的长时间依赖于域的演化,分别在量级为 102 和 104L / ΔU 的流动时间尺度上(对于 N = 400)。最终状态涉及一个随机采样该域的单一结构,可能构成一种“相对平衡”。结构内的涡旋分布遵循伦德格伦 - 波廷(L - P)平衡分布的非各向同性截断形式(具有负的高温;L - P 参数λ接近 -1)。核心发现是,在中间阶段 II 中,在此处考虑的广泛情形下,层的扩展速率是通用的。其值(以动量厚度计)为 0.0166±0.0002 倍的ΔU。然而,阶段 II 在湍流剪切流文献中作为自相似的“平衡”状态被广泛研究,它是涡旋气体系统快速非平衡演化的一部分,由于其持续时间小于一个 L / ΔU,我们将其称为“爆发性的”。阶段 II 还表现出与 N 无关的双涡旋相关性的显著值,表明当前忽略相关性或将其视为 O(1 / N)的动力学理论无法描述此阶段。在阶段 I 和 II 中当前模拟中层厚度的演化与空间演化(三维纳维 - 斯托克斯)剪切层的实验观测结果一致。此外,阶段 III 中的涡度 - 流函数关系与在二维纳维 - 斯托克斯时间剪切层中计算的关系相近[J. 索梅里亚、C. 斯塔凯和 R. 罗伯特,《流体力学杂志》233 661(1991)]。这些发现表明,在通过大规模动量和涡度扩散确定自由剪切层增长过程中,所谓的开尔文 - 毕奥 - 萨伐尔机制占主导地位。