Ando Hiroyasu, Boccaletti S, Aihara Kazuyuki
Department of Mathematical Informatics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Jun;75(6 Pt 2):066211. doi: 10.1103/PhysRevE.75.066211. Epub 2007 Jun 20.
Based on an automatic feedback adjustment of an additional parameter of a dynamical system, we propose a strategy for controlling periodic orbits of desired periods in chaotic dynamics and tracking them toward the set of unstable periodic orbits embedded within the original chaotic attractor. The method does not require information on the system to be controlled, nor on any reference states for the targets, and it overcomes some of the difficulties encountered by other techniques. Assessments of the method's effectiveness and robustness are given by means of the application of the technique to the stabilization of unstable periodic orbits in both discrete- and continuous-time systems.
基于动态系统附加参数的自动反馈调整,我们提出了一种策略,用于控制混沌动力学中所需周期的周期轨道,并将它们朝着嵌入在原始混沌吸引子内的不稳定周期轨道集进行跟踪。该方法不需要关于待控制的系统的信息,也不需要关于目标的任何参考状态的信息,并且它克服了其他技术所遇到的一些困难。通过将该技术应用于离散和连续时间系统中不稳定周期轨道的稳定化,对该方法的有效性和鲁棒性进行了评估。