Pereira R F, de S Pinto S E, Viana R L, Lopes S R, Grebogi C
Departamento de Física, Universidade Estadual de Ponta Grossa, 84032-900, Ponta Grossa, Paraná, Brazil.
Chaos. 2007 Jun;17(2):023131. doi: 10.1063/1.2748619.
Many chaotic dynamical systems of physical interest present a strong form of nonhyperbolicity called unstable dimension variability (UDV), for which the chaotic invariant set contains periodic orbits possessing different numbers of unstable eigendirections. The onset of UDV is usually related to the loss of transversal stability of an unstable fixed point embedded in the chaotic set. In this paper, we present a new mechanism for the onset of UDV, whereby the period of the unstable orbits losing transversal stability tends to infinity as we approach the onset of UDV. This mechanism is unveiled by means of a periodic orbit analysis of the invariant chaotic attractor for two model dynamical systems with phase spaces of low dimensionality, and seems to depend heavily on the chaotic dynamics in the invariant set. We also described, for these systems, the blowout bifurcation (for which the chaotic set as a whole loses transversal stability) and its relation with the situation where the effects of UDV are the most intense. For the latter point, we found that chaotic trajectories off, but very close to, the invariant set exhibit the same scaling characteristic of the so-called on-off intermittency.
许多具有物理意义的混沌动力系统呈现出一种称为不稳定维度变异性(UDV)的强形式非双曲性,对于这种情况,混沌不变集包含具有不同数量不稳定特征方向的周期轨道。UDV的出现通常与嵌入混沌集中的不稳定不动点的横向稳定性丧失有关。在本文中,我们提出了一种UDV出现的新机制,即当我们接近UDV出现时,失去横向稳定性的不稳定轨道的周期趋于无穷大。这种机制是通过对两个低维相空间模型动力系统的不变混沌吸引子进行周期轨道分析揭示的,并且似乎在很大程度上依赖于不变集中的混沌动力学。我们还描述了这些系统的爆发分岔(混沌集作为一个整体失去横向稳定性)及其与UDV效应最强烈情况的关系。对于后一点,我们发现远离但非常接近不变集的混沌轨迹表现出与所谓的开关间歇性相同的标度特征。