Suppr超能文献

受限弹性双层膜的表面不稳定性:理论与模拟

Surface instability of confined elastic bilayers: Theory and simulations.

作者信息

Tomar Gaurav, Sharma Ashutosh, Shenoy Vijay, Biswas Gautam

机构信息

Department of Mechanical Engineering, Indian Institute of Technology, Kanpur, UP 208016, India.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Jul;76(1 Pt 1):011607. doi: 10.1103/PhysRevE.76.011607. Epub 2007 Jul 30.

Abstract

The surface of a soft elastic film becomes unstable and forms a self-organized undulating pattern because of adhesive interactions when it comes in contact proximity with a rigid surface. For a single film, the pattern length scale lambda , which is governed by the minimization of the elastic stored energy, gives lambda approximately 3h , where h is the film thickness. Based on a linear stability analysis and simulations of adhesion and debonding, we consider the contact instability of an elastic bilayer, which provides greater flexibility in the morphological control of interfacial instability. Unlike the case of a single film, the morphology of the contact instability patterns, debonding distance, and debonding force in a bilayer can be controlled in a nonlinear way by varying the thicknesses and shear moduli of the films. Interestingly, the pattern wavelength in a bilayer can be greatly increased or decreased compared to a single film when the adhesive contact is formed by the stiffer or the softer of the two films, respectively. In particular, lambda as small as 0.5h can be obtained. This indicates a new strategy for pattern miniaturization in elastic contact lithography.

摘要

当柔软的弹性薄膜与刚性表面接触接近时,由于粘附相互作用,其表面会变得不稳定并形成自组织起伏图案。对于单个薄膜,图案长度尺度λ由弹性储能的最小化决定,约为λ≈3h,其中h是薄膜厚度。基于线性稳定性分析以及粘附和脱粘的模拟,我们考虑了弹性双层的接触不稳定性,这在界面不稳定性的形态控制方面提供了更大的灵活性。与单个薄膜的情况不同,双层中接触不稳定性图案的形态、脱粘距离和脱粘力可以通过改变薄膜的厚度和剪切模量以非线性方式进行控制。有趣的是,当通过双层中较硬或较软的薄膜形成粘附接触时,双层中的图案波长与单个薄膜相比可以大大增加或减小。特别是,可以获得低至0.5h的λ。这表明了弹性接触光刻中图案小型化的一种新策略。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验