Wang Sijian, Nan Bin, Zhu Ji, Beer David G
Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA.
Biometrics. 2008 Mar;64(1):132-40. doi: 10.1111/j.1541-0420.2007.00877.x. Epub 2007 Aug 3.
Recent interest in cancer research focuses on predicting patients' survival by investigating gene expression profiles based on microarray analysis. We propose a doubly penalized Buckley-James method for the semiparametric accelerated failure time model to relate high-dimensional genomic data to censored survival outcomes, which uses the elastic-net penalty that is a mixture of L1- and L2-norm penalties. Similar to the elastic-net method for a linear regression model with uncensored data, the proposed method performs automatic gene selection and parameter estimation, where highly correlated genes are able to be selected (or removed) together. The two-dimensional tuning parameter is determined by generalized crossvalidation. The proposed method is evaluated by simulations and applied to the Michigan squamous cell lung carcinoma study.
近期癌症研究的关注点在于通过基于微阵列分析研究基因表达谱来预测患者的生存期。我们针对半参数加速失效时间模型提出了一种双重惩罚的Buckley-James方法,以将高维基因组数据与删失生存结果相关联,该方法使用了弹性网惩罚,它是L1范数惩罚和L2范数惩罚的混合。与用于无删失数据的线性回归模型的弹性网方法类似,所提出的方法可进行自动基因选择和参数估计,其中高度相关的基因能够一起被选择(或剔除)。二维调优参数通过广义交叉验证来确定。所提出的方法通过模拟进行评估,并应用于密歇根鳞状细胞肺癌研究。